欢迎来到天天文库
浏览记录
ID:39484197
大小:213.96 KB
页数:4页
时间:2019-07-04
《初升高数学衔接知识点》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.两个数的差的绝对值的几何意义:表示在数轴上,数和数之间的距离.1.填空:(1)若,则x=_________;若,则x=_________.(2)如果,且,则b=________;若,则c=________.2.选择题:下列叙述正确的是()(A)若,则(B)若,则(C)若,则(D)若,则3.化简:
2、x-5
3、-
4、2x-13
5、(x>5).2.乘法公式我们在初中已经学习过了下列一
6、些乘法公式:(1)平方差公式;(2)完全平方公式.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式;(2)立方差公式;(3)两数和立方公式;(4)两数差立方公式.练习1.填空:(1)();(2);(3) .2.选择题:(1)若是一个完全平方式,则等于()(A)(B)(C)(D)(2)不论,为何实数,的值()(A)总是正数(B)总是负数(C)可以是零(D)可以是正数也可以是负数43.分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1分解因式:(1)x2
7、-3x+2;(2)x2+4x-12;(3);(4).2.提取公因式法与分组分解法例2分解因式:(1);(2).练习1.选择题:多项式的一个因式为()(A)(B)(C)(D)2.分解因式:(1)x2+6x+8;(2)8a3-b3;(3)x2-2x-1;(4).3.分解因式: (1);(2);(3); (4).4.根的判别式我们知道,对于一元二次方程ax2+bx+c=0(a≠0),用配方法可以将其变形为.①因为a≠0,所以,4a2>0.于是(1)当b2-4ac>0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x1,2=;(
8、2)当b2-4ac=0时,方程①的右端为零,因此,原方程有两个等的实数根4x1=x2=-;(3)当b2-4ac<0时,方程①的右端是一个负数,而方程①的左边一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax2+bx+c=0(a≠0)的根的情况可以由b2-4ac来判定,我们把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax2+bx+c=0(a≠0),有(1)当Δ>0时,方程有两个不相等的实数根x1,2=;(2)当Δ=0时,方程有两个相等的实
9、数根x1=x2=-;(3)当Δ<0时,方程没有实数根.x1=x2=1;5.根与系数的关系(韦达定理)若一元二次方程ax2+bx+c=0(a≠0)有两个实数根,,则有;.所以,一元二次方程的根与系数之间存在下列关系:如果ax2+bx+c=0(a≠0)的两根分别是x1,x2,那么x1+x2=,x1·x2=.这一关系也被称为韦达定理.例1已知方程的一个根是2,求它的另一个根及k的值.例2已知关于x的方程x2+2(m-2)x+m2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m的值.例3若x1和x2分别是一元二次方程
10、2x2+5x-3=0的两根.(1)求
11、x1-x2
12、的值;(2)求的值;(3)x13+x23.6.二次函数y=ax2+bx+c的图像和性质4(1)当a>0时,函数y=ax2+bx+c图象开口向上;顶点坐标为,对称轴为直线x=-;当x<时,y随着x的增大而减小;当x>时,y随着x的增大而增大;当x=时,函数取最小值y=.(2)当a<0时,函数y=ax2+bx+c图象开口向下;顶点坐标为,对称轴为直线x=-;当x<时,y随着x的增大而增大;当x>时,y随着x的增大而减小;当x=时,函数取最大值y=.例1求二次函数y=-3x2-6x+1图象
13、的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x取何值时,y随x的增大而增大(或减小)?并画出该函数的图象.4
此文档下载收益归作者所有