弧长和扇形的面积2教案

弧长和扇形的面积2教案

ID:39174778

大小:586.51 KB

页数:5页

时间:2019-06-26

弧长和扇形的面积2教案_第1页
弧长和扇形的面积2教案_第2页
弧长和扇形的面积2教案_第3页
弧长和扇形的面积2教案_第4页
弧长和扇形的面积2教案_第5页
资源描述:

《弧长和扇形的面积2教案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、弧长和扇形的面积教学目标:认识扇形,会计算弧长和扇形的面积,通过弧长和扇形面积的发现与推导,培养学生运用已有知识探究问题获得新知的能力。重点难点:1、重点:弧长和扇形面积公式,准确计算弧长和扇形的面积。2、难点:运用弧长和扇形的面积公式计算比较复杂图形的面积。教学过程:一、发现弧长和扇形的面积的公式1、弧长公式的推导。如图1是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗?(取3.14)我们容易看出这段铁轨是圆周长的,所以铁轨的长度≈(米). 问题:上面求的是的圆心角所对的弧长,若圆心角为,如何计算它所对的

2、弧长呢?请同学们计算半径为,圆心角分别为、、、、所对的弧长。等待同学们计算完毕,与同学们一起总结出弧长公式(这里关键是圆心角所对的弧长是多少,进而求出的圆心角所对的弧长。)因此弧长的计算公式为__________________________练习:已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的长度。2、扇形的面积。如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形问:右图中扇形有几个?同求弧长的思维一样,要求扇形的面积,应思考圆心角为的扇形面积是圆面积的几分之几?进而求出圆心角的扇形面积。如果设圆心角是n°的扇形面积为

3、S,圆的半径为r,那么扇形的面积为___.因此扇形面积的计算公式为————————或——————————练习:1、如果扇形的圆心角是230°,那么这个扇形的面积等于这个扇形所在圆的面积的____________;2、扇形的面积是它所在圆的面积的,这个扇形的圆心角的度数是_________°.3、扇形的面积是S,它的半径是r,这个扇形的弧长是_____________二、例题讲解例1、如图,圆心角为60°的扇形的半径为10厘米,求这个扇形的面积和周长.(π≈3.14)例2、如图,把直角三角形ABC的斜边AB放在直线上,按顺时针方向在上转动两次,使它转

4、到△A2B2C2的位置上,设BC=1,AC=,则顶点A运动到A2的位置时,点A经过的路线有多长?点A经过的路线与直线所围成的图形的面积有多大?例3、已知如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,C为切点。设弦AB的长为d,圆环面积S与d之间有怎样的数量关系?例4、如图,正三角形ABC的边长为a,分别以A、B、C为圆心,为半径的圆两两相切于O1、O2、O3。求围成的图形面积(图中阴影部分)例5、如图,正三角形ABC的边长为2,分别以A、B、C为圆心,1为半径画弧,与△ABC的内切圆O围成的图形为图中阴影部分。求阴影。练习:P1471

5、、2、3、4、51、2、3、4、5、三、小结本节课我们共同探寻了弧长和扇形面积的计算公式,一方面,要理解公式的由来,另一方面,能够应用它们计算有关问题,在计算时力求准确无误。作业参考10、一段长为2的弧所在的圆半径是3,则此扇形的圆心角为_________,扇形的面积为_________。11、如图,PA、PB切⊙O于A、B,求阴影部分周长和面积。12、如图,⊙A、⊙B、⊙C、⊙D相互外离,它们的半径是1,顺次连结四个圆心得到四边形ABCD,则图中四个扇形的面积和是多少?13、一块等边三角形的木板,边长为1,现将木板沿水平线翻滚,那么B点从开始至结

6、束所走过的路径长度是多少?14、如图,扇形OAB的圆心角是90°,分别以OA、OB为直径在扇形内作半圆,则两部分图形面积的大小关系是什么?8、如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5。(1)若,求CD的长;(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留)。9、如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.如图②,若整个△EFG从图①的位置出发

7、,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).(1)当x为何值时,OP∥AC?(2)求y与x之间的函数关系式,并确定自变量x的取值范围.(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13∶24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=

8、13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)如图1所示,一张三角形

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。