欢迎来到天天文库
浏览记录
ID:39106238
大小:423.00 KB
页数:6页
时间:2019-06-25
《数学华东师大版七年级下册复习一元一次不等式(组)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、复习一元一次不等式(组)本章内容在中考中的考查方式主要是填空题、选择题及解答题中与方程、函数有关问题中字母系数的取值范围的确定.考查的重点是不等式的有关概念、性质、一元一次不等式、一元一次不等式组的解法以及与日常相联系的应用问题,在方程、函数的考查中,也常涉及不等式的知识.常结合转化、数形结合、类比、分类讨论思想方法.一、教学目标:1.能够根据具体问题中的大小关系了解不等式的意义和基本性质.2.会解简单的一元一次不等式,并能在数轴上表示出解集.会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集.3.会运用数形结合、分类等数学思想方法解决问题,会“逆向”地思考问
2、题,灵活的解答问题.二、教学重点:能熟练的解一元一次不等式与一元一次不等式组三、教学难点:能熟练的解一元一次不等式(组)并体会数形结合、分类讨论等数学思想四、教学过程(一)知识梳理1.知识结构图概念基本性质不等式的定义不等式的解法一元一次不等式的解法一元一次不等式组的解法不等式实际应用不等式的解集2.知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”.2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在
3、数轴上直观的表示出来,具体表示方法是先确定边界点。解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.3.不等式的基本性质(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果,那么(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,那么(或)(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果那么(或)说明:任意两个实数a、b的大小关系:①a-b>Oa>b;②a
4、-b=Oa=b;③a-bO或ax+b5、组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.8.不等式组解集的确定方法,可以归纳为以下四种类型(设a>b)不等式组图示解集(同大取大)(同小取小)(大小交叉取中间)无解(大小分离解为空)9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的6、解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.课堂练习(一)1.根据下图甲、乙所示,对a,b,c三种物体的重量判断不正确的是()A.acD.b”号或“<”号填空:(1)(2)(3)(4)5.下列各式一定成立的是()A.B.C.D.(二)例题讲解【例1】解不等式:解:去分母得去括号得移项得合并同类项得把系数化为1得【例2】解不等式组并把它的解集在数轴上表示出来.解:解不等式①7、得解不等式②得不等式①和②的解集在数轴上表示为∴原不等式组的解集是.【例3】已知关于的方程5-2=3-6+1的解满足-3<≤2,求的整数值.解:由5-2=3-6+1可解得:∵,∴.∴∴∴的整数解为0、1课堂练习(二)6.求代数式3(+1)的值不小于5-9的值的最大的整数.7.解不等式组,并把它的解集在数轴上表示出来.课堂练习(三)8.函数的自变量的取值范围是_____________.9.若关于的一元二次方程有两个不相等的实数根,则的取值范围为______________.10.如果关于的不等式(a+1)>a+1的解集为
5、组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.8.不等式组解集的确定方法,可以归纳为以下四种类型(设a>b)不等式组图示解集(同大取大)(同小取小)(大小交叉取中间)无解(大小分离解为空)9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的
6、解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.课堂练习(一)1.根据下图甲、乙所示,对a,b,c三种物体的重量判断不正确的是()A.acD.b”号或“<”号填空:(1)(2)(3)(4)5.下列各式一定成立的是()A.B.C.D.(二)例题讲解【例1】解不等式:解:去分母得去括号得移项得合并同类项得把系数化为1得【例2】解不等式组并把它的解集在数轴上表示出来.解:解不等式①
7、得解不等式②得不等式①和②的解集在数轴上表示为∴原不等式组的解集是.【例3】已知关于的方程5-2=3-6+1的解满足-3<≤2,求的整数值.解:由5-2=3-6+1可解得:∵,∴.∴∴∴的整数解为0、1课堂练习(二)6.求代数式3(+1)的值不小于5-9的值的最大的整数.7.解不等式组,并把它的解集在数轴上表示出来.课堂练习(三)8.函数的自变量的取值范围是_____________.9.若关于的一元二次方程有两个不相等的实数根,则的取值范围为______________.10.如果关于的不等式(a+1)>a+1的解集为
此文档下载收益归作者所有