欢迎来到天天文库
浏览记录
ID:39046111
大小:3.60 MB
页数:187页
时间:2019-06-24
《《近世代数教学》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《近世代数》课程是现代数学的基础,既是中学代数的继续发展,也是高等代数课程的继续和发展,同时它又同拓扑学、实变函数与泛函分析构成现代数学的三大基石,是进入数学王国的必由之路,是数学与应用数学专业学生必修的重要基础课。同学应当具备有初等代数,高等代数的背景,此外还有初等数论等方面的知识背景。近世代数高度的抽象是近世代数的显著特点,它的基本概念:群、环、域,对初学者也是很抽象的概念,因此,在本课程的学习中,大家要多注意实例,以加深对概念的正确理解。近世代数的习题,因抽象也都有一定的难度,但习题也是巩固和加深理解不可缺少的环节,
2、因此,应适当做一些习题,为克服做习题的困难,应注意教材内容和方法以及习题课内容。主要参考书1.B.L.瓦德瓦尔登著:代数学Ⅰ、Ⅱ卷,科学出版社,1964年版2.N.贾柯勃逊著:抽象代数1、2、3卷,科学出版社,1987年出版3.<<近世代数基础>>,张禾瑞,高等教育出版,1978年修订本。4.刘绍学著:近世代数基础,高等教育出版社,1999年出版5.石生明著:近世代数初步、高等教育出版社,2002年出版6.《近世代数》,吴品山,人民教育出版社,1979。7.《抽象代数学》,谢邦杰,上海科学技术出版社,1982。8.《抽象代
3、数基础》,刘云英,北京师范大学出版社,1990年。近世代数理论的三个来源代数方程的解(2)Hamilton四元数的发(3)Kummer理想数的发现(1)代数方程的解两千多年之前古希腊时代数学家就能够利用开方法解二次方程ax2+bx+c=0。16世纪初欧洲文艺复兴时期之后,求解高次方程成为欧洲代数学研究的一个中心问题。1545年意大利数学家G.Cardano(1501-1576)在他的著作《大术》(ArsMagna)中给出了三、四次多项式的求根公式,此后的将近三个世纪中人们力图发现五次方程的一般求解方法,但是都失败了。直到1
4、824年一位年青的挪威数学家N.Abel(1802-1829)才证明五次和五次以上的一般代数方程没有求根公式。但是人们仍然不知道什么条件之下一个已知的多项式能借助加、减、乘、除有理运算以及开方的方法求出它的所有根,什么条件之下不能求根。最终解决这一问题的是一位法国年青数学家E.Galois(1811—1832),Galois引入了扩域以及群的概念,并采用了一种全新的理论方法发现了高次代数方程可解的法则。在Galois之后群与域的理论逐渐成为现代化数学研究的重要领域,这是近世代数产生的一个最重要的来源。加罗华阿贝尔被誉为天才
5、数学家的伽罗瓦(1811-1832)是近世代数的创始人之一。他深入研究了一个方程能用根式求解所必须满足的本质条件,他提出的“伽罗瓦域”、“伽罗瓦群”和“伽罗瓦理论”都是近世代数所研究的最重要的课题。伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方
6、式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响。(2)Hamilton四元数的发现长期以来人们对于虚数的意义存在不同的看法,后来发现可以把复数看成二元数(a,b)=a+bi,其中i2=-1。二元数按(a,b)±(c,d)=(a±c,b±d),(a,b)(c,d)=(ad+bc,ac-bd)的法则进行代数运算,二元数具有直观的几何意义;与平面上的点一一
7、对应。这是数学家高斯提出的复数几何理论。二元数理论产生的一个直接问题是:是否存在三元数?经过长时间探索,力图寻求三元数的努力失败了。但是爱尔兰数学家W.Hamilton(1805-1865)于1843年成功地发现了四元数。四元数系与实数系、复数系一样可以作加减乘除四则运算,但与以前的数系相比,四元数是一个乘法不交换的数系。从这点来说四元数的发现使人们对于数系的代数性质的认识提高了一大步。四元数代数也成为抽象代数研究的一个新的起点,它是近世代数的另一个重要理论来源。(3)Kummer理想数的发现17世纪初法国数学家费马(P.
8、Fermat1601-1665)研究整数方程时发现当n≥3时,方程xn+yn=zn没有正整数解,费马认为他能够证明这个定理,但是其后的三百多年中人们研究发现这是一个非常困难的问题,这一问题被后来的研究者称为费马问题或费马大定理,此定理直到1995年才被英国数学家A.Wiles证明。对费马问题的研究在三个
此文档下载收益归作者所有