欢迎来到天天文库
浏览记录
ID:39041221
大小:23.92 KB
页数:6页
时间:2019-06-24
《数学人教版九年级上册21.1 一元二次方程》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题:一元二次方程课时:第2课时教学目标A类:了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.B类:提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.C类:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.预习作业个体学习方案课本28页练习1.2.教学板块学生课堂练习单有效生成一、复习引入问题1.如图,一个长为10m的梯子斜靠在墙
2、上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米?学生活动:请同学独立完成下列问题(1)设梯子底端距墙为xm,那么,问题2.一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少?老师点评(略)二、探索新知提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少?(2)如果抛开实际问题,问题1中还有其它解吗?问题2呢?老师点评:(1)问题1中x=6是x2-36=0的解,问题2中,x=10是x2+2x-120=0的解.(3)如果抛开实际问题,问题(1)中还有
3、x=-6的解;问题2中还有x=-12的解.根据题意,可得方程为___________.整理,得_________.(2)设苗圃的宽为xm,则长为_______m.根据题意,得________.整理,得________.小组合作讨论x2为了与以前所学的一元一次方程等只有一个解的区别,我们称:一元二次方程的解叫做一元二次方程的根.例1.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.解:将上面的
4、这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.例2.你能用以前所学的知识求出下列方程的根吗?(1)x2-64=0(2)3x2-6=0(3)x2-3x=0分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义.解:(1)移项得x2=64根据平方根的意义,得:x=±8即x1=8,x2=-8师针对学生做的情况进行分析。三、巩固练习-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也满
5、足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.师板演一个,后两个找两位同学上台板演。其它同学在下面做。(2)移项、整理,得x2=2根据平方根的意义,得x=±即x1=,x2=-(3)因为x2-3x=x(x-3)所以x2-3x=0,就是x(x-3)=0教材P33思考题练习1、2.四、归纳小结老师点评:本节课应掌握:(1)一元二次方程根的概念及它与以前的解的相同处与不同处;(2)要会判断一个数是否是一元二次方程的根;(3)要会用一些方法求一元二次方程
6、的根.五、布置作业1.教材P34复习巩固3、4综合运用5、6、7拓广探索8、9.2.选用课时作业设计.六、作业设计一、选择题1.方程x(x-1)=2的两根为().A.x1=0,x2=1B.x1=0,x2=-1C.x1=1,x2=2D.x1=-1,x2=22.方程ax(x-b)+(b-x)=0的根是().A.x1=b,x2=aB.x1=b,x2=C.x1=a,x2=D.x1=a2,x2=b23.已知x=-1是方程ax2+bx+c=0的根(b≠0),则=().所以x=0或x-3=0即x1=0,x2=3学生归
7、纳A.1B.-1C.0D.2二、填空题1.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________.2.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.3.方程(x+1)2+x(x+1)=0,那么方程的根x1=______;x2=________.三、综合提高题1.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值.答案:一、1.D2.B3.A二、1.9,-92.-133.-1,1-三、1.由已知,得a+b=-
8、3,原式=(a+b)2=(-3)2=9.反思:
此文档下载收益归作者所有