欢迎来到天天文库
浏览记录
ID:38985809
大小:72.00 KB
页数:3页
时间:2019-06-23
《八年级下勾股定理(4)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、18.1勾股定理(四)教学目标知识与技能1.会用勾股定理解决较综合的问题。2.树立数形结合的思想。过程与方法经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法。情感态度与价值观培养学生思维意识,发展数学理念,体会勾股定理的应用价值。重点勾股定理的综合应用。难点勾股定理的综合应用。教学过程教学设计与师生互动备注第一步:复习巩固:复习勾股定理的内容。本节课探究勾股定理的综合应用。第二步:应用提高:例1.已知:在Rt△ABC中,∠C=90°,CD⊥BC于D,∠A=60°,CD=,求线段AB的长。分析:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所
2、以要求学生对图形及性质掌握非常熟练,能够灵活应用。目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC2-BD2=AC2-AD2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等。要求学生能够自己画图,并正确标图。引导学生分析:欲求AB,可由AB=BD+CD,分别在两个三角形中利用勾股定理和特殊角,求出BD=3和AD=1。或欲求AB,可由,分别在两个三角形中利用勾股定理和特殊角,求出AC=2和BC=6例2已知:如图,△ABC中,AC=4,∠B=45°,∠A=60°,根据题设可知什么?分析:由于本题中的△ABC不是直角三角形,所以
3、根据题设只能直接求得∠ACB=75°。在学生充分思考和讨论后,发现添置AB边上的高这条辅助线,就可以求得AD,CD,BD,AB,BC及S△ABC。让学生充分讨论还可以作其它辅助线吗?为什么?例3(补充)已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。教学中要逐层展示给学生,让学生深入体会。解:延长AD、BC交于E。∵∠A=∠60°,∠B=90°,∴∠E
4、=30°。∴AE=2AB=8,CE=2CD=4,∴BE2=AE2-AB2=82-42=48,BE==。∵DE2=CE2-CD2=42-22=12,∴DE==。∴S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE=例4(教材P76页探究3)分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。变式训练:在数轴上画出表示的点。第三步:应用小结:⑴数形结合,正确标图,将条件反应到图形中,充分利用图形的功能和性质。⑵分类讨论,从不同角度考虑条件和图形,考虑问题要全面,在讨论的过程中提高学生的灵活应用能力。⑶作辅助线,作
5、高是常用的创造直角三角形的辅助线做法,在做辅助线的过程中,提高学生的综合应用能力。⑷优化训练,在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度。第四步:课堂练习1.△ABC中,AB=AC=25cm,高AD=20cm,则BC=,S△ABC=。2.△ABC中,若∠A=2∠B=3∠C,AC=cm,则∠A=度,∠B=度,∠C=度,BC=,S△ABC=。3.△ABC中,∠C=90°,AB=4,BC=,CD⊥AB于D,则AC=,CD=,BD=,AD=,S△ABC=。4.已知:如图,△ABC中,AB=26,BC=25,AC=17,求S△ABC。5.在Rt△
6、ABC中,∠C=90°,CD⊥BC于D,∠A=60°,CD=,AB=。6.在Rt△ABC中,∠C=90°,S△ABC=30,c=13,且a<b,则a=,b=。7.已知:如图,在△ABC中,∠B=30°,∠C=45°,AC=,求(1)AB的长;(2)S△ABC。8.在数轴上画出表示-的点。参考答案:1.30cm,300cm2;2.90,60,30,4,;3.2,,3,1,;4.作BD⊥AC于D,设AD=x,则CD=17-x,252-x2=262-(17-x)2,x=7,BD=24,S△ABC=AC·BD=254;5.4;6.5,12;7.提示:作AD⊥BC于D,A
7、D=CD=2,AB=4,BD=,BC=2+,S△ABC==2+;8.略。课后反思:
此文档下载收益归作者所有