《椭圆的几何性质》

《椭圆的几何性质》

ID:38956983

大小:270.51 KB

页数:11页

时间:2019-06-22

《椭圆的几何性质》_第1页
《椭圆的几何性质》_第2页
《椭圆的几何性质》_第3页
《椭圆的几何性质》_第4页
《椭圆的几何性质》_第5页
资源描述:

《《椭圆的几何性质》》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、椭圆的简单几何性质(1)二、椭圆简单的几何性质-a≤x≤a,-b≤y≤b知椭圆落在x=±a,y=±b组成的矩形中oyB2B1A1A2F1F2cab1、范围:椭圆的对称性YXOP(x,y)P1(-x,y)P2(-x,-y)2、对称性:oyB2B1A1A2F1F2cab从图形上看,椭圆关于x轴、y轴、原点对称。从方程上看:(1)把x换成-x方程不变,图象关于y轴对称;(2)把y换成-y方程不变,图象关于x轴对称;(3)把x换成-x,同时把y换成-y方程不变,图象关于原点成中心对称。3、椭圆的顶点*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。*长轴、短轴:线段

2、A1A2、B1B2分别叫做椭圆的长轴和短轴。a、b分别叫做椭圆的长半轴长和短半轴长。oyB2B1A1A2F1F2cab(0,b)(a,0)(0,-b)(-a,0)4、椭圆的离心率e(刻画椭圆扁平程度的量)离心率:椭圆的焦距与长轴长的比:叫做椭圆的离心率。[1]离心率的取值范围:[2]离心率对椭圆形状的影响:0

3、

4、x

5、≤a,

6、y

7、≤b关于x轴、y轴成轴对称;关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)长半轴长为a,短半轴长为b.a>ba2=b2+c2

8、x

9、≤b,

10、y

11、≤a同前(b,0)、(-b,0)、(0,a)、(0,-a)(0,c)、(0,-c)同前同前同前例1:例1求椭圆的长轴长、短轴长、离心率和顶点,并画出它的草图。解:将所给的方程化为标准方程得:椭圆的焦点在x轴上,并且a=5,b=4,c==3椭圆的长轴长2a=10,短轴长2b=8离心率e==因为焦点在x轴上,所以椭圆的四个顶点的坐标是(-5,0)、(5,0)、(

12、0,-4)、(0,4)例2分别求适合下列条件的椭圆的标准方程(1)经过点P(-3,0),Q(0,-2);(2)长轴长为8,离心率为解:(1)因为点P,Q在坐标轴上,并且P,Q分别是椭圆的长轴和短轴的一个端点,所以a=3,b=2由于长轴在x轴上,故椭圆的焦点在x轴上,所以所求的椭圆标准方程为因为2a=18,e==所以a=9,c=3于是而椭圆的焦点可能在x轴上,也可能在y轴上.所以所求的椭圆方程为或例3、已知一个椭圆形的油桶盖,其长轴的两端到同一个焦点的距离分别为40cm和10cm(如图2-7)。求椭圆的标准方程和两个焦点的坐标。解:由已知得

13、

14、=

15、O

16、+

17、O

18、=

19、a+c

20、

21、=

22、O

23、+

24、O

25、=a-c于是有解得a=25,c=15因此故椭圆的标准方程为焦点坐标为.总结提炼1.知识总结:本节课我们讨论了椭圆的四个简单性质,掌握这些性质是解决有关问题的基础。2.数学思想:本节主要用到数形结合、猜想、类比的思想方法,平时学习中注意运用。五.课后作业课本33页1、2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。