欢迎来到天天文库
浏览记录
ID:38919223
大小:1.62 MB
页数:79页
时间:2019-06-21
《《本科随机过程》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、概率论(续)1第五章大数定律和中心极限定理关键词:契比雪夫不等式大数定律中心极限定理2§1大数定律背景本章的大数定律,对第一章中提出的“频率稳定性”,给出理论上的论证为了证明大数定理,先介绍一个重要不等式34例1:在n重贝努里试验中,若已知每次试验事件A出现的概率为0.75,试利用契比雪夫不等式,(1)若n=7500,估计A出现的频率在0.74至0.76之间的概率至少有多大;(2)估计n,使A出现的频率在0.74至0.76之间的概率不小于0.90。5随机变量序列依概率收敛的定义67契比雪夫大数定律表明,当n很大时,的算术平均接近于数学期望。这种接近
2、是在概率意义下的接近。此外,定理中要求随机变量的方差存在,但当随机变量服从相同分布时,就不需要这一要求。8例2:9大数定律的重要意义:贝努里大数定律建立了在大量重复独立试验中事件出现频率的稳定性,正因为这种稳定性,概率的概念才有客观意义,贝努里大数定律还提供了通过试验来确定事件概率的方法,既然频率nA/n与概率p有较大偏差的可能性很小,我们便可以通过做试验确定某事件发生的频率并把它作为相应的概率估计,这种方法即是在第7章将要介绍的参数估计法,参数估计的重要理论基础之一就是大数定理。10§2中心极限定理背景:有许多随机变量,它们是由大量的相互独立的随
3、机变量的综合影响所形成的,而其中每个个别的因素作用都很小,这种随机变量往往服从或近似服从正态分布,或者说它的极限分布是正态分布,中心极限定理正是从数学上论证了这一现象,它在长达两个世纪的时期内曾是概率论研究的中心课题。111213例3:设某种电器元件的寿命服从均值为100小时的指数分布,现随机取得16只,设它们的寿命是相互独立的,求这16只元件的寿命的总和大于1920小时的概率。14例4:某保险公司的老年人寿保险有1万人参加,每人每年交200元,若老人在该年内死亡,公司付给受益人1万元。设老年人死亡率为0.017,试求保险公司在一年内这项保险亏本的
4、概率。15例5:设某工厂有400台同类机器,各台机器发生故障的概率都是0.02,各台机器工作是相互独立的,试求机器出故障的台数不小于2的概率。16例6:17例7:(例1续)在n重贝努里试验中,若已知每次试验事件A出现的概率为0.75,试利用中心极限定理,(1)若n=7500,估计A出现的频率在0.74至0.76之间的概率近似值;(2)估计n,使A出现的频率在0.74至0.76之间的概率不小于0.90。18随机过程19关键词:随机过程状态和状态空间样本函数有限维分布函数均值函数方差函数自相关函数自协方差函数互相关函数互协方差函数正态过程独立增量过程泊
5、松过程维纳过程第十章随机过程及其统计描述20§1随机过程的概念随机过程被认为是概率论的“动力学”部分,即它的研究对象是随时间演变的随机现象,它是从多维随机变量向一族(无限多个)随机变量的推广。给定一随机试验E,其样本空间S={e},将样本空间中的每一元作如下对应,便得到一系列结果:21一维、二维或一般的多维随机变量的研究是概率论的研究内容,而随机序列、随机过程则是随机过程学科的研究内容。从前面的描述中看到,它的每一样本点所对应的,是一个数列或是一个关于t的函数。22例1:抛掷一枚硬币的试验,样本空间是S={H,T},现定义:123423242526
6、例5:考虑抛掷一颗骰子的试验:随机过程的分类:随机过程可根据参数集T和任一时刻的状态分为四类,参数集T可分为离散集和连续集两种情况,任一时刻的状态分别为离散型随机变量和连续型随机变量两种:连续参数连续型的随机过程,如例2,例3连续参数离散型的随机过程,如例1,例4离散参数离散型的随机过程,如例5离散参数连续型的随机过程,如下例28§2随机过程的统计描述29例1:抛掷一枚硬币的试验,定义一随机过程:301234313233343536373839样本函数x(t)404142(二)随机过程的数字特征4344454647续484950(三)二维随机过程的
7、分布函数和数字特征515253§3泊松过程及维纳过程54独立增量过程的性质:5556(一)泊松过程等间隔的不等间隔的5758续59续60续61证毕62636465666768定理一:强度为λ的泊松流(泊松过程)的点间间距是相互独立的随机变量,且服从同一指数分布定理二:如果任意相继出现的两个质点的点间间距是相互独立,且服从同一个指数分布:这两个定理刻画出了泊松过程的特征,定理二告诉我们,要确定一个计数过程是不是泊松过程,只要用统计方法检验点间间距是否独立,且服从同一个指数分布。则质点流构成强度为λ的泊松过程6970(二)维纳过程维纳过程是布朗运动的数
8、学模型以W(t)表示运动中一微粒从时刻t=0到时刻t>0的位移的横坐标,且设W(0)=0。由于微粒的运动是受到大量随机的、
此文档下载收益归作者所有