资源描述:
《5.4.2 分式方程》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第五章分式4.分式方程(二)一、学生知识状况分析学生的技能基础:在上一节课的基础上,学生基本了解分式方程的概念,熟悉等式的性质并能利用等式的性质解一元一次方程中,了解一般一元一次方程的解法,去分母,去括号,移项,合并同类项,化系数为1,并理解每一步的根据是什么,从而能通过观察类比的方法,探索分式方程的解法并能理解解题步骤的根据.学生活动经验基础:本节课主要采用观察、类比的方法、讨论的形式,学生比较熟悉,能在二元一次方程转化为一元一次方程的基础上,再次体会数学转化思想.二、教学目标在上一节课中,学生通过对实际问题的分析,已经感受到分式方程是刻画现实世界的有效模型,本节课安排《分式方程》第二课时
2、,旨在学会解分式方程,能从中体会数学转化思想的深刻含义,为此,本课时的教学目标是:知识与技能:(1)体会分式方程到整式方程的转化思想.(2)掌握分式方程的解法.数学能力:(1)培养学生的数学转化思想.(2)培养学生的观察、类比、探索的能力.情感与态度:鼓励学生独立思考,认真观察,大胆猜想,积极动手,提高分析问题与解决问题能力.三、教学过程分析本节课设计了七个教学环节:回顾——想一想——试一试——议一议——练一练——学生小结——反馈练习.活动目的:回顾等式性质,解一元一次方程的解法,着重复习去分母的步骤,为学生过渡到分式方程去分母.注意事项:学生能很快回忆起根据等式性质,找出各分母的最小公分母
3、,两边同时乘以相同的因式,达到去分母的目的,并能熟练解出方程.但是,部分学生容易出现去分母时漏乘某一项,特别是不含分母的项.另外,学生还容易出现的错误是:去分母后,如果分子是多项式,漏去括号,导致计算错误,这些错误在解分式方程时也容易出现,在复习一元一次方程时老师对这一点要重点强调.在复习解一元一次方程时,老师还应强调检验方程的根,培养学生严谨的作风,并为解分式方程的验根打下基础.第二环节:想一想活动内容:解下列分式方程: 活动目的:引导学生仔细观察,采用类比的方法找出解分式方程的关键――去分母,把分式方程转化为整式方程即一元一次方程.注意事项:通过观察类比,学生容易发现只要方程两边
4、同时乘以相同的因式,可以去分母,使方程变为学过的一元一次方程,从而解快了问题.另外,学生还能根据比例的性质:内项积等于外项积.解出这个方程,对于这部分学生应该鼓励,肯定数学一题多解.第三环节:试一试活动内容:解下列分式方程活动目的:使学生进一步体会并熟悉分式方程的解法,并强调检验方程的解.注意事项:通过前面的探索体验,学生都很有兴趣并能基本掌握分式方程的解法,并在老师的指导下,规范书写过程.在解题过程中,要提醒学生注意可先化简原方程,从而达到简便运算的目的.第四环节:议一议活动内容:解分式方程时,小明的解为,他的答案正确吗?活动目的:让学生通过解这个方程,并思考问题,从而产生疑惑,展开讨论,
5、了解分式方程会产生增根.注意事项:在解这个方程的过程中,学生容易忽视两个分母互为相反数,所以在去分母时会化简为繁.要提醒学生先将一个分母化为另一个分母的相反数.另外这个方程把学生易犯的错误集中在一起,例如-2这一项没乘公分母.通过仔细观察,积极讨论,学生都发现使原方程无意义,了解增根的概念,及产生的原因,提高了对方程验根的重视程度,总结出验根的方法(其方法是代入最简公分母中或原方程中进行检验,使分母为零的是增根,否则不是)第五环节:练一练活动内容:解下列分程(1)(2)活动目的:让学生认真完成从审题到最后检验的完整过程,熟练掌握解题方法.注意事项:学生解第一小题时,从比例式的性质出发,利用外
6、项积等于内项积的性质,交叉相乘,和利用等式性质去分母一样,都能把分式方程转化为整式方程.解第二题时,有的学生因为审题不仔细,把和当成两个不同的整式,给计算带来不必要的麻烦.反应出有些学生处理问题的能力的欠缺.第六环节:学生小结活动内容:在今天的学习活动中,你学会了哪些知识?掌握了哪些数学方法?活动目的:鼓励学生独立思考,并用自己的语言描述,然后再与同伴讨论、交流自己的结果.通过学生的回顾小结,加深分式方程解法和数学转化思想的理解.注意事项:学生在解方程过程中易犯的错误:1、解方程时忘记检验;2、去分母时忘记加括号;3、去分母时漏乘不含分母的项.第七环节:反馈练习活动内容:1.方程的解为()A
7、.1B.-1C.D.02.方程的解为___________.3.解方程4.若关于的方程有增根,则的值为_______.活动目的:通过学生的反馈练习,使老师能全面了解学生对分式方程解法的掌握程度,以及对增根的理解,以便老师能及时进行查漏补缺.注意事项:从学生的反馈练习中来看,学生能熟练解出分式方程,但对增根的理解及灵活处理还不够,在今后的练习中还要巩固渗透,要让学生弄清增根产生的原因,因此要正确验根从而排除增根