5.1认识分式 第2课时教学设计

5.1认识分式 第2课时教学设计

ID:38883868

大小:403.62 KB

页数:7页

时间:2019-06-20

5.1认识分式 第2课时教学设计_第1页
5.1认识分式 第2课时教学设计_第2页
5.1认识分式 第2课时教学设计_第3页
5.1认识分式 第2课时教学设计_第4页
5.1认识分式 第2课时教学设计_第5页
资源描述:

《5.1认识分式 第2课时教学设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、5.1认识分式第2课时教学设计教学目标知识与技能1.能正确理解和运用分式的基本性质.2.能解决一些与分式有关的简单的实际问题.3.会进行简单分式的乘除运算,具有一定的代数化归能力.4.增强学生的代数推理能力与应用意识.过程与方法通过与分数的基本性质相比较,归纳得出分式的基本性质,体验类比的思想方法.情感态度与价值观通过运用分式的基本性质对分式进行变形,获得分式变形的基本方法,体验学习的乐趣.重点、难点【重点】 理解分式的基本性质,会进行分式的化简.【难点】 灵活应用分式的基本性质将分式变形.教学准备【教师准备

2、】 预设学生学习过程中容易出错的地方.【学生准备】 复习分数的基本性质.教学过程新课导入:的依据是什么?这个问题同学们会很快说出答案,依据就是分数的基本性质,那么分式是否具有和分数一样的性质呢?[设计意图] 提示学生运用类比的思想进行本课时的学习,为学生提供本课时学习方法方面的指导.新知构建一、分式的基本性质  [过渡语] 下面我们来看看分式是否具有与分数类似的性质.请看下面的问题.(1)填空:==;==.(2)你认为与相等吗?与呢?学生独立思考第(1)题,根据分数的基本性质,的分子分母同乘4,可得,的分子分

3、母同时除以2,可得,小组讨论类比第(1)题解决第(2)题.类比分数的基本性质,你能猜想出分式的基本性质吗?学生尝试归纳,相互补充,总结得出分式的基本性质.分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.这一性质可以用式子表示为:这一性质可以用式子表示为:=,=(m≠0).教师强调:a,b,m均为整式,m≠0.引导学生分析分数的基本性质与分式的基本性质的区别:在分数的基本性质中,“数”是一个具体的、唯一的确定值,在分式的基本性质中,“整式”的值随整式中的字母的取值不同而变化.[设计意图] 一方

4、面提高学生对分式的基本性质的认识,另一方面通过师生归纳,进一步加深对分式基本性质的理解.二、例题讲解  [过渡语] 利用分式的基本性质只是改变分式的形式,不改变分式的值.请看下面的例题.(教材例2)下列等式的右边是怎样从左边得到的?(1)=(y≠0); (2)=.处理方式:引导学生观察等式的左边和右边各发生了什么变化,讨论解题思路.〔解析〕 (1)的分母2x乘y才能化为2xy,为保证分式的值不变,根据分式的基本性质,分子b也要乘y,才能得到.(2)的分子ax除以x得到a,所以分母bx也需要除以x得到b.在这里

5、,由于已知,所以x≠0.解:(1)因为y≠0,所以==.(2)因为x≠0,所以==.(教材例3)化简下列分式:(1); (2).处理方式:引导学生观察分式的分子和分母是否有公因式,利用分式的基本性质,对分式进行化简.〔解析〕 (1)的分子和分母均有因式ab,所以根据分式的基本性质,可以同时除以ab,则分式可化为ac.(2)对于分式,先对分子和分母进行因式分解,x2-1=(x+1)(x-1),x2-2x+1=(x-1)2,发现分子分母有公因式x-1,由分式的基本性质可化简.解:(1)==ac.(2)==.总结:

6、像上面的例3,把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.[知识拓展] 1.从已知的两个分子或分母的比较中,找到分式变形的依据,再运用分式的基本性质求未知,是解决这类题的方法.2.应用分式的基本性质对分式进行变形需要注意的问题:(1)分子、分母应同时做乘、除法中的同一种运算;(2)所乘或除以的必须是同一个整式;(3)所乘或除以的整式的值应该不等于零.三、做一做化简下列分式:(1); (2).〔解析〕 根据分式的基本性质进行化简.解:(1)==.(2)==.四、议一议在化简时,小颖和小明出现了分

7、歧,小颖认为=,而小明认为==,你对他们两人的做法有何看法?与同伴交流.解:在小明的化简结果中,分子和分母已没有公因式,这样的分式称为最简分式.小明的做法正确.[知识拓展] 化简分式时,通常要使结果成为最简分式或整式.约分是应用分式的基本性质把分式的分子、分母同时除以同一个整式,使分式的值不变,所以要找准分子和分母的公因式,约分的结果要是最简分式或整式.[设计意图] 通过做一做和议一议,检查学生对分式的约分的掌握情况,对于错误及时指出并纠正.五、想一想(1)与有什么关系?(2),与-有什么关系?解:(1)的分

8、子分母都乘-1与相等.(2)同样的道理,与-相等.与-相等.分式的符号法则:分式的分子、分母及分式本身的三个符号中,任意改变其中两个的符号,分式的值不变;若只改变其中一个或三个全变号,则分式的值变成原分式值的相反数.[设计意图] 通过想一想的设计,让学生掌握分式的符号法则.检测反馈1.若将分式(a,b均为正数)中的字母a,b的值分别扩大为原来的2倍,则分式的值(  )A.扩大为原来的2倍 B.缩小为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。