欢迎来到天天文库
浏览记录
ID:38578700
大小:422.00 KB
页数:29页
时间:2019-06-15
《22.3.2二次函数(二次函数的应用)基础》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、22.3.2二次函数(二次函数的应用)基础(1)参考答案与试题解析 一.选择题(共30小题)1.(2015•铜仁市)河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为( )A.﹣20mB.10mC.20mD.﹣10m【考点】二次函数的应用.【分析】根据题意,把y=﹣4直接代入解析式即可解答.【解答】解:根据题意B的纵坐标为﹣4,把y=﹣4代入y=﹣x2,得x=±10,∴A(﹣10,﹣4),B(10,﹣4),∴AB=20m.即水面宽度AB为20m.故选C.第29页(共29
2、页)【点评】本题考查了点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题. 2.(2015•金华)图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=﹣(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为( )A.16米B.米C.16米D.米【考点】二次函数的应用.【专题】计算题.【分析】先确定C点的横坐标,然后根据抛物线上点的坐标特征求出C点的纵坐标,从而可得到AC的长.【解答】解:∵AC⊥x轴,O
3、A=10米,∴点C的横坐标为﹣10,当x=﹣10时,y=﹣(x﹣80)2+16=﹣(﹣10﹣80)2+16=﹣,∴C(﹣10,﹣),第29页(共29页)∴桥面离水面的高度AC为m.故选B.【点评】本题考查了二次函数的应用:利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题. 3.(2015•潍坊)如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最
4、大值是( )A.cm2B.cm2C.cm2D.cm2【考点】二次函数的应用;展开图折叠成几何体;等边三角形的性质.【分析】第29页(共29页)如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以
5、求出结论.【解答】解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=x,∴DE=6﹣2x,∴纸盒侧面积=3x(6﹣2x)=﹣6x2+18x,=﹣6(x﹣)2+,∴
6、当x=时,纸盒侧面积最大为.故选C.第29页(共29页)【点评】本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键. 4.(2015•六盘水)如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是( )A.60m2B.63m2C.64m2D.66m2【考点】二次函数的应用.【专题】应用题;压轴题.【分析】设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式,利用二次函数性质求出面积最大值即可.【解答】解:设BC=xm,则AB=(16﹣x)
7、m,矩形ABCD面积为ym2,根据题意得:y=(16﹣x)x=﹣x2+16x=﹣(x﹣8)2+64,当x=8m时,ymax=64m2,则所围成矩形ABCD的最大面积是64m2.第29页(共29页)故选C.【点评】此题考查了二次函数的应用,熟练掌握二次函数性质是解本题的关键. 5.(2015•石家庄校级模拟)如图是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面下降1m时,水面的宽度为( )A.3B.2C.3D.2【考点】二次函数的应用.【分析】根据已知得出直角坐标系,进而求出二次函数解析
此文档下载收益归作者所有