欢迎来到天天文库
浏览记录
ID:38751303
大小:1.99 MB
页数:9页
时间:2019-06-18
《22.3.2 二次函数与几何综合运用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、22.3 实际问题与二次函数第2课时 二次函数与几何综合运用教学目标能根据具体几何问题中的数量关系,列出二次函数关系式,并能应用二次函数的相关性质解决实际几何问题,体会二次函数是刻画现实世界的有效数学模型.重点难点重点应用二次函数解决几何图形中有关的最值问题.难点函数特征与几何特征的相互转化以及讨论最值在何处取得.教学设计一、引入新课上节课我们一起研究用二次函数解决利润等代数问题,这节课我们共同研究二次函数与几何的综合应用.教学设计二、教学过程问题1:教材第49页探究1.用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l为多少米时,场地
2、的面积S最大?分析:提问1:矩形面积公式是什么?提问2:如何用l表示另一边?提问3:面积S的函数关系式是什么?教学设计问题2:如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜园,墙长32m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?分析:提问1:问题2与问题1有什么不同?提问2:我们可以设面积为S,如何设自变量?提问3:面积S的函数关系式是什么?答案:设垂直于墙的边长为x米,S=x(60-2x)=-2x2+60x.提问4:如何求解自变量x的取值范围?墙长32m对此题有什么作用?答案:0<60-2x≤32,即14≤x<30.提问5:如何求最值
3、?教学设计问题3:将问题2中“墙长为32m”改为“墙长为18m”,求这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?提问1:问题3与问题2有什么异同?提问2:可否模仿问题2设未知数、列函数关系式?提问3:可否试设与墙平行的一边为x米?则如何表示另一边?教学设计教学设计三、回归教材阅读教材第51页的探究3,讨论有没有其他“建系”的方法?哪种“建系”更有利于题目的解答?四、基础练习1.教材第51页的探究3,教材第57页第7题.2.阅读教材第52~54页.五、课堂小结与作业布置课堂小结1.利用求二次函数的最值问题可以解决实际几何问题.2.实际问题的最值求解
4、与函数图象的顶点、端点都有关系,特别要注意最值的取得不一定在函数的顶点处.作业布置教材第52页 习题第4~7题,第9题.
此文档下载收益归作者所有