资源描述:
《MATLAB矩阵分析与处理完成》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第3章MATLAB矩阵分析与处理3.1特殊矩阵3.2矩阵结构变换3.4矩阵求值3.5矩阵的特征值与特征向量3.1特殊矩阵3.1.1通用的特殊矩阵常用的产生通用特殊矩阵的函数有:zeros:产生全0矩阵(零矩阵)。ones:产生全1矩阵(幺矩阵)。eye:产生单位矩阵。rand:产生0~1间均匀分布的随机矩阵。randn:产生均值为0,方差为1的标准正态分布随机矩阵。3.1.2用于专门学科的特殊矩阵(1)魔方矩阵魔方矩阵有一个有趣的性质,其每行、每列及两条对角线上的元素和都相等。对于n阶魔方阵,
2、其元素由1,2,3,…,n2共n2个整数组成。MATLAB提供了求魔方矩阵的函数magic(n),其功能是生成一个n阶魔方阵。(2)范得蒙矩阵范得蒙(Vandermonde)矩阵最后一列全为1,倒数第二列为一个指定的向量,其他各列是其后列与倒数第二列的点乘积。可以用一个指定向量生成一个范得蒙矩阵。在MATLAB中,函数vander(V)生成以向量V为基础向量的范得蒙矩阵。例如,A=vander([1;2;3;5])即可得到上述范得蒙矩阵。(3)希尔伯特矩阵在MATLAB中,生成希尔伯特矩阵的函
3、数是hilb(n)。使用一般方法求逆会因为原始数据的微小扰动而产生不可靠的计算结果。MATLAB中,有一个专门求希尔伯特矩阵的逆的函数invhilb(n),其功能是求n阶的希尔伯特矩阵的逆矩阵。(4)托普利兹矩阵托普利兹(Toeplitz)矩阵除第一行第一列外,其他每个元素都与左上角的元素相同。生成托普利兹矩阵的函数是toeplitz(x,y),它生成一个以x为第一列,y为第一行的托普利兹矩阵。这里x,y均为向量,两者不必等长。toeplitz(x)用向量x生成一个对称的托普利兹矩阵。例如T=
4、toeplitz(1:6)(5)伴随矩阵MATLAB生成伴随矩阵的函数是compan(p),其中p是一个多项式的系数向量,高次幂系数排在前,低次幂排在后。例如,为了求多项式的x3-7x+6的伴随矩阵,可使用命令:p=[1,0,-7,6];compan(p)(6)帕斯卡矩阵我们知道,二次项(x+y)n展开后的系数随n的增大组成一个三角形表,称为杨辉三角形。由杨辉三角形表组成的矩阵称为帕斯卡(Pascal)矩阵。函数pascal(n)生成一个n阶帕斯卡矩阵。例3.5求(x+y)5的展开式。在MAT
5、LAB命令窗口,输入命令:pascal(6)矩阵次对角线上的元素1,5,10,10,5,1即为展开式的系数。3.2矩阵结构调整变换3.2.1对角阵与三角阵1.对角阵只有对角线上有非0元素的矩阵称为对角矩阵,对角线上的元素相等的对角矩阵称为数量矩阵,对角线上的元素都为1的对角矩阵称为单位矩阵。(1)提取矩阵的对角线元素设A为m×n矩阵,diag(A)函数用于提取矩阵A主对角线元素,产生一个具有min(m,n)个元素的列向量。diag(A)函数还有一种形式diag(A,k),其功能是提取第k条对角
6、线的元素。(2)构造对角矩阵设V为具有m个元素的向量,diag(V)将产生一个m×m对角矩阵,其主对角线元素即为向量V的元素。diag(V)函数也有另一种形式diag(V,k),其功能是产生一个n×n(n=m+
7、k
8、)对角阵,其第k条对角线的元素即为向量V的元素。2.三角阵三角阵又进一步分为上三角阵和下三角阵,所谓上三角阵,即矩阵的对角线以下的元素全为0的一种矩阵,而下三角阵则是对角线以上的元素全为0的一种矩阵。(1)上三角矩阵求矩阵A的上三角阵的MATLAB函数是triu(A)。triu(
9、A)函数也有另一种形式triu(A,k),其功能是求矩阵A的第k条对角线以上的元素。例如,提取矩阵A的第2条对角线以上的元素,形成新的矩阵B。(2)下三角矩阵在MATLAB中,提取矩阵A的下三角矩阵的函数是tril(A)和tril(A,k),其用法与提取上三角矩阵的函数triu(A)和triu(A,k)完全相同。3.2.2矩阵的转置与旋转1.矩阵的转置转置运算符是单撇号(’)。2.矩阵的旋转利用函数rot90(A,k)将矩阵A旋转90º的k倍,当k为1时可省略。3.矩阵的左右翻转对矩阵实施
10、左右翻转是将原矩阵的第一列和最后一列调换,第二列和倒数第二列调换,…,依次类推。MATLAB对矩阵A实施左右翻转的函数是fliplr(A)。4.矩阵的上下翻转MATLAB对矩阵A实施上下翻转的函数是flipud(A)。3.4矩阵求值3.4.1方阵的行列式把一个方阵看作一个行列式,并对其按行列式的规则求值,这个值就称为所对应的行列式的值。在MATLAB中,求方阵A所对应的行列式的值的函数是det(A)。3.4.2矩阵的秩与迹1.矩阵的秩矩阵线性无关的行数与列数称为矩阵的秩。在MA