资源描述:
《教学设计.4 教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.4用因式分解法求解一元二次方程一、学生知识状况分析学生的知识技能基础:本章前几节课中又学习了配方法及公式法解一元二次方程,掌握了这两种方法的解题思路及步骤。学生活动经验基础:1.学生经历了用配方法和公式法求一元二次方程的解的过程,并在现实情景中加以应用,提高应用意识和能力,感受到了解一元二次方程的必要性和作用;2.在以前的数学学习中,学生经历合作学习的过程,具有一定的合作学习的经验,和合作、交流能力。二、教学任务分析教学目标知识与技能目标1、能根据具体一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性;2、会用因式分解法(提公因式法、公式法)解决某些简
2、单的数字系数的一元二次方程;3、通过因式分解法的学习,培养学生分析问题、解决问题的能力,并体会转化的思想。过程与方法目标1、通过学生探究一元二次方程的解法,使学生知道分解因式法是解一元二次方程的一种简便、特殊的方法,通过“降次”把一元二次方程转化为两个一元一次方程;2、通过小组合作交流,尝试在解方程过程中,多角度地思考问题,寻求从不同角度解决问题的方法,并初步学会不同方法之间的差异,学会在与他人的交流中获益。情感与态度目标1、经历观察,归纳分解因式法解一元二次方程的过程,激发好奇心;2、进一步丰富数学学习的成功体验,使学生在学习中培养良好的情感、态度和主动参与、合作交流
3、的意识,进一步提高观察、分析、概括等能力。三、教学过程分析本节课设计了七个教学环节:第一环节:复习回顾;第二环节:情境引入,探究新知;第三环节:例题解析;第四环节:巩固练习;第五环节:拓展延伸;第六环节:感悟与收获;第七环节:布置作业。第一环节:复习回顾内容:1、用配方法解一元二次方程的关键是将方程转化为(x+m)2=n(n≥0)的形式。2、用公式法解一元二次方程应先将方程化为一般形式。3、选择合适的方法解下列方程:①x2-6x=7②3x2+8x-3=04.因式分解:16x2-25=3x2+2x=5.若A*B=0,则A=或B=目的:以问题串的形式引导学生思考,回忆两种解
4、一元二次方程的方法,有利于学生衔接前后知识,形成清晰的知识脉络,为学生后面的学习作好铺垫。实际效果:第一问题学生先动笔写在练习本上,有个别同学少了条件“n≥0”。第二问题由于较简单,学生很快回答出来。第三问题由学生独立完成,通过练习学生复习了配方法及公式法,并能灵活应用,提高了学生自信心。第二环节:情景引入、探究新知内容:1、师:有一道题难住了我,想请同学们帮助一下,行不行?生:齐答行。师:出示问题,一个数的平方与这个数的3倍有可能相等吗?如果能,这个数是几?你是怎样求出来的?说明:学生独自完成,教师巡视指导,选择不同答案准备展示。附:学生A:设这个数为x,根据题意,可
5、列方程x2=3x∴x2-3x=0∵a=1,b=-3,c=0∴b2-4ac=9∴x1=0,x2=3∴这个数是0或3。学生B::设这个数为x,根据题意,可列方程x2=3x∴x2-3x=0x2-3x+(3/2)2=(3/2)2(x-3/2)2=9/4∴x-3/2=3/2或x-3/2=-3/2∴x1=3,x2=0∴这个数是0或3。学生C::设这个数为x,根据题意,可列方程x2=3x∴x2-3x=0即x(x-3)=0∴x=0或x-3=0∴x1=0,x2=3∴这个数是0或3。学生D:设这个数为x,根据题意,可列方程x2=3x两边同时约去x,得∴x=3∴这个数是3。2、师:同学们在下
6、面用了多种方法解决此问题,观察以上四个同学的做法是否存在问题?你认为那种方法更合适?为什么?说明:小组内交流,中心发言人回答,及时让学生补充不同的思路,关注每一个学生的参与情况。超越小组:我们认为D小组的做法不正确,因为要两边同时约去X,必须确保X不等于0,但题目中没有说明。虽然我们组没有人用C同学的做法,但我们一致认为C同学的做法最好,这样做简单又准确.学生E:补充一点,刚才讲X须确保不等于0,而此题恰好X=0,所以不能约去,否则丢根.师:这两位同学的回答条理清楚并且叙述严密,相信下面同学的回答会一个比一个棒!(及时评价鼓励,激发学生的学习热情)3、师:现在请C同学为
7、大家说说他的想法好不好?生:齐答好学生C:X(X-3)=0所以X1=0或X2=3因为我想3×0=0,0×(-3)=0,0×0=0反过来,如果ab=0,那么a=0或b=0,所以a与b至少有一个等于04、师:好,这时我们可这样表示:如果a×b=0,那么a=0或b=0这就是说:当一个一元二次方程降为两个一元一次方程时,这两个一元一次方程中用的是“或”,而不用“且”。所以由x(x-3)=0得到x=0和x-3=0时,中间应写上“或”字。我们再来看c同学解方程x2=3x的方法,他是把方程的一边变为0,而另一边可以分解成两个因式的乘积,然后利用a×b=