19.2.3 一次函数与一元一次不等式

19.2.3 一次函数与一元一次不等式

ID:38561358

大小:233.50 KB

页数:4页

时间:2019-06-14

19.2.3 一次函数与一元一次不等式_第1页
19.2.3 一次函数与一元一次不等式_第2页
19.2.3 一次函数与一元一次不等式_第3页
19.2.3 一次函数与一元一次不等式_第4页
资源描述:

《19.2.3 一次函数与一元一次不等式》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、19.2.3一次函数与一元一次不等式教学目标(一)教学知识点1.认识一元一次不等式与一次函数问题的转化关系.毛2.学会用图象法求解不等式.3.进一步理解数形结合思想.(二)能力训练要求1.培养提高从不同方向思考问题的能力.2.探究解题思路,以便灵活运用知识.3.提高问题间互相转化的技能.(三)情感与价值观要求1.积极参与活动,培养学习兴趣.2.形成合作交流的意识及独立思考的习惯.教学重点1.理解一元一次不等式与一次函数的转化关系及本质联系.2.掌握用图象求解不等式的方法.教学难点:图象法求解不等式中自变量取值范围的确定.教学方法:思考─交流,归纳─

2、总结.教具准备:多媒体演示.教学过程Ⅰ.引入问题,创设情境[师]上节课我们用函数观点,从数和形两个角度学习了一元一次方程求解问题。练一练:如图:当x,一次函数y=x-2的值为0.当x=3时,函数y=x-2的值是.当x=4时,函数y=x-2的值是.思考:当x为何值时,函数y=x-2对应的值大于0?Ⅱ.导入新课问题1:解不等式2x-4>0问题2:自变量为何值时,函数y=2x-4的值大于0?思考:问题1与问题2有什么关系?[师]两个问题实际上是同一个问题,虽然结果一样,但是表达的方式不同。因为问题1是直接求不等式2x-4>0的解集,解得x>2,是从不等式

3、角度进行求解。而问题2是考虑当函数y=2x-4的函数值大于0时,自变量X的取值,是通过列不等式2x-4>0求解,解得x>2,是从函数的角度进行求解。我们再观察函数y=2x-4的图象.可以看出:当x>2时,直线y=2x-4上的点全在x轴上方,即这时y=2x-4>0.由此可知,通过函数图象也可求得不等式的解为x>2.由上面两个问题的关系,我们能得到“解不等式ax+b>0”与“求自变量x在什么范围内,一次函数y=ax+b的值大于0”之间的关系,实质上是同一个问题.由于任何一元一次不等式都可以转化的ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,

4、所以解一元一次不等式可以看作:当一次函数值大于(或小于)0时,求自变量相应的取值范围.【练习】试一试(根据一次函数与不等式的关系填空):(1)解不等式3x-6<0,可看作求一次函数y=3x-6的函数值小于0的自变量的取值范围。(2)“当自变量x取何值时,函数y=3x+8的值大于0”可看作求不等式3x+8>0的解集。例1根据下列一次函数的图象,直接写出下列不等式的解集(1)3x+6>0(即y>0)(3)-x+3≥0(即y≥0)x>-2x≤3(2)3x+6≤0(即y≤0)(4)-x+3<0(即y<0)x≤-2x>3一次函数与一元一次不等式的关系从数的角

5、度看从形的角度看例2用画函数图象的方法解不等式5x+4<2x+10.【活动设计意图】:通过这一活动使学生熟悉一元一次不等式与一次函数值大于或小于0时,自变量取值范围的问题间关系,并寻求出解决这一问题的具体方法,灵活运用.【教师活动】:引导学生通过画图、观察、寻求答案,并能通过两种不同解法,得到同一答案,探索思考总结归纳出其中的共同点.【学生活动】:在教师指导下,顺利完成作图,观察求出答案,并能归纳总结出其特点.活动过程及结论:方法一:原不等式可以化为3x-6<0,画出直线y=3x-6的图象,可以看出,当x<2时这条直线上的点在x轴的下方.即这时y=

6、3x-6<0,所以不等式的解集为:x<2.方法二:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10可以看出,它们交点的横坐标为2.当x>2时,对于同一个x,直线y=5x+4上的点在直线y=2x+10上的相应点的下方,这时5x+4<2x+10,所以不等式的解集为:x<2.以上两种方法其实都是把解不等式转化为比较直线上点的位置的高低.[师]从上面两种解法可以看出,虽然像上面那样用一次函数图象来解不等式未必简单,但是从函数角度看问题,能发现一次函数.一元一次不等式之间的联系,能直观地看出怎样用图形来表示不等式的解.这种函数观

7、点认识问题的方法,对于继续学习数学很重要.【当堂检测】1.如图是一次函数y=kx+b的图象,则关于x的方程kx+b=0的解为    ;关于x的不等式kx+b>0的解集为      ;关于x的不等式kx+b<0的解集为      ;2.若关于x的不等式kx+b>0的解集为,则一次函数y=kx+b当时,图象在x轴      ;当时,图象在x轴      3、看图象解不等式5x-3>3x+1从图中看出,当x>2时,直线y=5x-3上的点在直线y=3x+1上相应点的上方,即5x-3>3x+1,所以不等式的解集为x>2。4.如图,一次函数y=kx+b的图象经

8、过点P(-2,-3),则关于x的不等式kx+b>-2的解集为________________.Ⅲ.回顾反思板书设计§19.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。