欢迎来到天天文库
浏览记录
ID:38559532
大小:123.50 KB
页数:3页
时间:2019-06-14
《18.1.2 平行四边形的判定(3)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、18.1.2 平行四边形的判定(3)教学目标1.理解并掌握三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线的性质进行有关的证明和计算.重点与难点重点掌握并运用三角形中位线的性质解决问题.难点三角形中位线性质的证明.(辅助线的添加方法)教学设计一、复习导入创设情境:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的呢?二、讲授新课师:在前面学习平行四边形时,常把它分成几个三角形,利用三角形全等的性质研究平行四边形的有关问题.下面我们利用平行四边形来研究三角形的有关问题.如图,在
2、△ABC中,D,E分别是AB,AC的中点,连接DE,像DE这样,连接三角形两边中点的线段,我们称之为三角形的中位线,我们猜想,DE∥BC,DE=BC.下面我们对它进行证明.如图,D,E分别是△ABC的边AB,AC的中点.求证:DE∥BC,且DE=BC.分析:本题既要证明两条线段所在的直线平行,又要证明其中一条线段的长等于另一条线段长的一半,将DE延长一倍后,可以将证明DE=BC转化为证明延长后的线段与BC相等.又由于E是AC的中点,根据对角线互相平分的四边形是平行四边形构造一个平行四边形,利用平行四边形的性质进行证明.证明:如图,延长DE到点F,使EF=D
3、E,连接FC,DC,AF.∵AE=EC,DE=EF,∴四边形ADCF是平行四边形,∴CF∥DA,CF=DA.∴CF∥BD,CF=BD∴四边形DBCF是平行四边形,∴DF∥BC,DF=BC.又DE=DF,∴DE∥BC,且DE=BC.通过上述证明,我们可以得到三角形的中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.三、例题讲解【例】已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.证明:连接AC,在△DAC中,∵AH=HD,CG=GD,∴HG∥AC,HG=AC(三角形中位线
4、的性质).同理EF∥AC,EF=AC.∴HG∥EF,且HG=EF.∴四边形EFGH是平行四边形.此题可得结论:顺次连接四边形四条边的中点,所得的四边形是平行四边形.四、巩固练习1.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC和BC,并分别找出AC和BC的中点M,N.如果测得MN=20m,那么A,B两点的距离是________m,理由是________________________.【答案】40 MN是△ABC的中位线2.如图,△ABC中,D,E,F分别是AB,AC,BC的中点.(1)若EF=5cm,则AB=________cm;若BC=9cm,
5、则DE=________cm;(2)中线AF与中位线DE有什么特殊的关系?证明你的猜想.【答案】(1)10 4.5 (2)AF与DE互相平分,证明略五、课堂小结这节课你有什么收获?总结:三角形中位线定理:三角形两边中点的连线是三角形的中位线;三角形的中位线平行于第三边,并且等于第三边的一半.三角形的中位线是三角形中一条重要的线段,三角形中位线定理在许多计算及证明中都要用到.六、作业:18.15题
此文档下载收益归作者所有