1.5 第2课时 二次函数与利润问题及几何问题

1.5 第2课时 二次函数与利润问题及几何问题

ID:38543572

大小:1.47 MB

页数:20页

时间:2019-06-14

1.5 第2课时 二次函数与利润问题及几何问题_第1页
1.5 第2课时 二次函数与利润问题及几何问题_第2页
1.5 第2课时 二次函数与利润问题及几何问题_第3页
1.5 第2课时 二次函数与利润问题及几何问题_第4页
1.5 第2课时 二次函数与利润问题及几何问题_第5页
资源描述:

《1.5 第2课时 二次函数与利润问题及几何问题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.5二次函数的应用第2课时二次函数与利润问题及几何问题情境引入合作探究随堂训练课堂小结在日常生活中存在着许许多多的与数学知识有关的实际问题.商品买卖过程中,作为商家追求利润最大化是永恒的追求.如果你是商场经理,如何定价才能使商场获得最大利润呢?情景引入某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每星期销售额是元,销售利润元.探究交流180006000数量关系(1)销售额=售价×销售量;(2)利润=销售额-总成本=单件利润×销售量;(3)单件利润=售价-进价.探究点一二次函数与利润最大问题

2、合作探究例某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?涨价销售①每件涨价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售涨价销售2030020+x300-10xy=(20+x)(300-10x)建立函数关系式:y=(20+x)(300-10x),即:y=-10x2+100x+6000.6000②自变量x的取值范围如何确定?营销规律是价格上涨,销量下

3、降,因此只要考虑销售量就可以,故300-10x≥0,且x≥0,因此自变量的取值范围是0≤x≤30.③涨价多少元时,利润最大,最大利润是多少?y=-10x2+100x+6000,当时,y=-10×52+100×5+6000=6250.即定价65元时,最大利润是6250元.知识要点求解最大利润问题的一般步骤(1)建立利润与价格之间的函数关系式:运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”(2)结合实际意义,确定自变量的取值范围;(3)在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数

4、的简图,利用简图和性质求出.例用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?问题1矩形面积公式是什么?问题2如何用l表示另一边?问题3面积S的函数关系式是什么?探究点二二次函数与几何面积例用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?解:根据题意得S=l(30-l),即S=-l2+30l(0

5、1如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜园,墙长32m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?xx60-2x问题2我们可以设面积为S,如何设自变量?问题3面积S的函数关系式是什么?问题4如何求解自变量x的取值范围?墙长32m对此题有什么作用?问题5如何求最值?最值在其顶点处,即当x=15m时,S=450m2.问题1变式1与例题有什么不同?设垂直于墙的边长为x米,S=x(60-2x)=-2x2+60x.0<60-2x≤32,即14≤x<30.变式2如图,用一段长为60m的篱笆围成一个一边靠墙的

6、矩形菜园,墙长18m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?xx60-2x问题1变式2与变式1有什么异同?问题2可否模仿变式1设未知数、列函数关系式?问题3可否试设与墙平行的一边为x米?则如何表示另一边?解:设矩形面积为Sm2,与墙平行的一边为x米,则问题4当x=30时,S取最大值,此结论是否正确?问题5如何求自变量的取值范围?0<x≤18.问题6如何求最值?由于30>18,因此只能利用函数的增减性求其最值.当x=18时,S有最大值是378.不正确.实际问题中求解二次函数最值问题,不一定都取图象顶点处,要

7、根据自变量的取值范围.通过变式1与变式2的对比,希望同学们能够理解函数图象的顶点、端点与最值的关系,以及何时取顶点处、何时取端点处才有符合实际的最值.知识要点二次函数解决几何面积最值问题的方法1.求出函数解析式和自变量的取值范围;2.配方变形,或利用公式求它的最大值或最小值,3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内.1.某种商品每件的进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30)出售,可卖出(300-20x)件,使利润最大,则每件售价应定为元.252.进价为80元的某件定价100

8、元时,每月可卖出2000件,价格每上涨1元,销售量便减少5件,那么每月售出衬衣的总件数y(件)与衬衣售价x(元)之间的函数关为.每月利润w(元)与衬衣售价x(元)之间的函数关系式为.(以上关系式只列式不化简).y=2000-5(x-100)w=[2000-5(x-100)](

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。