欢迎来到天天文库
浏览记录
ID:38541701
大小:92.50 KB
页数:9页
时间:2019-06-14
《18.1平行四边形的性质(1)教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、18.1.1平行四边形的性质(1)教学设计凤庆县郭大寨中学-段朝忠一、教材分析:本节教材选自人教2011年版八年级上册第十八章《平行四边形的性质》的第一节,是初中数学几何的重要组成部分。是学生在学习和掌握了对称、旋转和全等等知识的基础上,进一步借助图形的运动来研究平行四边形的性质。它不但是学习矩形、菱形、正方形等后继知识的基础,也是研究两角相等、两线段相等的一个重要工具。二、学生分析:平行四边形这部分内容,学生在小学阶段已接触过,初步了解了平行四边形的概念及能直观识别平行四边形的图形。三、教学目标1、知识与技能:(1)理解并掌握平行四边形的定义(2)能根据定义探究平行四边形的性质
2、(3)了解平行四边形在生活中的应用实例,能根据平行四边形的性质解决简单的实际问题。2、过程与方法:(1)经历运用平行四边形描述现实世界的过程,发展学生的抽象思维和形象思维(2)根据平行四边形的性质进行简单的计算与证明,通过观察、实验、归纳、证明,能运用数学语言合乎逻辑地进行讨论与质疑,培养学生的推理能力与演绎能力3、情感态度与价值观:(1)在应用平行四边形的性质的过程中培养独立思考的习惯,在数学学习活动中获得成功的体验。通过平行四边形的性质的应用,进一步认识数学与生活的密切联系。四、教学重难点重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.难点:运用平行四
3、边形的性质进行有关的论证和计算.五、教学方法自主探究法、讨论法六、教学手段电子白板、PPT多媒体七、教学过程【情景导入】1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?2.你还能举出平行四边形在生活中应用的例子吗?【新知探究】探究一、平行四边形的定义如图,平行四边形ABCD可以表示为:,几何表示定义:你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ABCD”,读作“平行
4、四边形ABCD”.①∵AB//DC,AD//BC,∴四边形ABCD是平行四边形;②∵四边形ABCD是平行四边形∴AB//DC,AD//BC.注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.平行四边形不相邻的两个顶点连成的线段叫平行四边形的对角线. (教学时要结合图形,让学生认识清楚)探究二:平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角
5、之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形
6、的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴ ∠1=∠3,∠2=∠4.又 AC=CA,∴ △ABC≌△CDA(ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴ ∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2平行四边形的对角相等.用符号语言表示:如图 小试牛刀:如图:在ABCD中,根据已知你能得到哪些结论?为什么?小结:平行四边形中知道其中一角可求出另外三个角的度数探究三、平行线之间的距离如图,直线a∥b,A,B为直线a上的任意两点,点A到直线b的距离和点B到直线b的距离相等吗?为什么?ABCDba
7、总结:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离。【应用举例】例1:如图,小明用一根36m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少?ADBC解:∵四边形ABCD是平行四边形∴AB=CD,AD=BC∵AB=8m又∵AB+BC+CD+AD=36∴AD=BC=10m【知识巩固】有一块形状如图所示的玻璃,不小心把EDF部分打碎了,现在只测得AE=60cm、BC=80cm,∠B=60°且AE∥BC、AB∥CF,你能根
此文档下载收益归作者所有