欢迎来到天天文库
浏览记录
ID:38541314
大小:2.51 MB
页数:52页
时间:2019-06-14
《专题八 第1讲》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第1讲 函数与方程思想、数形结合思想数学思想解读1.函数与方程思想的实质就是用联系和变化的观点,描述两个量之间的依赖关系,刻画数量之间的本质特征,在提出数学问题时,抛开一些非数学特征,抽象出数量特征,建立明确的函数关系,并运用函数的知识和方法解决问题.有时需要根据已知量和未知量之间的制约关系,列出方程(组),进而通过解方程(组)求得未知量.函数与方程思想是相互联系,相互为用的.2.数形结合思想,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.数形结合思想的应用包括以下两个方面:(1)“以形助数”,把
2、某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,揭示数学问题的本质;(2)“以数定形”,把直观图形数量化,使形更加精确.热点一 函数与方程思想应用1求解不等式、函数零点的问题【例1】(1)(2017·衡阳市联考)设03、程思想把函数图象交点问题转化为方程根的问题,应用函数思想把方程根的问题转化为函数零点问题.(2)含参数的方程问题一般通过直接构造函数或分离参数化为函数解决.答案(1)C(2)8应用2函数与方程思想在数列中的应用探究提高1.本题完美体现函数与方程思想的应用,第(2)问利用裂项相消求Tn,构造函数,利用单调性求Tn的最小值.2.数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式与前n项和公式即为相应的解析式,因此在解决数列最值(范围)问题的方法如下:(1)由其表达式判断单调性,求出最值;(2)由表达式不易判断单调性4、时,借助an+1-an的正负判断其单调性.应用3函数与方程思想在几何问题中的应用探究提高几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的求法来求解,这是求面积、线段长最值(范围)问题的基本方法.热点二 数形结合思想应用1讨论函数的零点或方程的根解析(1)由f(x)=5、2x-26、-b有两个零点,可得7、2x-28、=b有两个不等的实根,从而可得函数y=9、2x-210、的图象与函数y=b的图象有两11、个交点,如图所示.结合函数的图象,可得0<b<2.(2)作出f(x)的图象如图所示.当x>m时,x2-2mx+4m=(x-m)2+4m-m2.∴要使方程f(x)=b有三个不同的根,则有4m-m20.又m>0,解得m>3.答案(1)(0,2)(2)(3,+∞)探究提高1.本题利用数形结合思想,将函数零点或方程的根的情况转化为两函数图象交点问题.2.探究方程解的问题应注意两点:(1)讨论方程的解(或函数的零点)一般可构造两个函数,使问题转化为讨论两曲线的交点问题,讨论方程的解一定要注意图象的准确性、全面性,12、否则会得到错解.(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则,不要刻意去用数形结合.应用2利用数形结合思想求最值、范围【例5】(1)记实数x1,x2,…,xn中最小数为min{x1,x2,…,xn},则定义在区间[0,+∞)上的函数f(x)=min{x2+1,x+3,13-x}的最大值为()A.5B.6C.8D.10(2)已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0).若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7B.6C.5D.4解析(13、1)在同一坐标系中作出三个函数y=x2+1,y=x+3,y=13-x的图象如图:由图可知,在实数集R上,min{x2+1,x+3,13-x}为y=x+3上A点下方的射线,抛物线AB之间的部分,线段BC,与直线y=13-x点C下方的部分的组合图.显然,在区间[0,+∞)上,在C点时,y=min{x2+1,x+3,13-x}取得最大值.所以14、OP15、max=16、OC17、+r=6,即m的最大值为6.答案(1)C(2)B探究提高1.第(1)题利用函数的图象求最值,避免分段函数的讨论;第(2)题利用几何直观,把m的值转化为圆上的点到原点的18、距离.2.运用数形结合思想求解最值问题(1)对于几何图形中的动态问题,应分析各个变量的变化过程,找出其中的相互关系求解.(2)应用几何意义法解决问题需要熟悉常见的几何结构的代数形式,主要有:①比值——可考虑直线的斜率;②二元一次式——可考虑直线的截距;③根式分式——可考虑点到直线的距离;④根式——可考虑
3、程思想把函数图象交点问题转化为方程根的问题,应用函数思想把方程根的问题转化为函数零点问题.(2)含参数的方程问题一般通过直接构造函数或分离参数化为函数解决.答案(1)C(2)8应用2函数与方程思想在数列中的应用探究提高1.本题完美体现函数与方程思想的应用,第(2)问利用裂项相消求Tn,构造函数,利用单调性求Tn的最小值.2.数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式与前n项和公式即为相应的解析式,因此在解决数列最值(范围)问题的方法如下:(1)由其表达式判断单调性,求出最值;(2)由表达式不易判断单调性
4、时,借助an+1-an的正负判断其单调性.应用3函数与方程思想在几何问题中的应用探究提高几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的求法来求解,这是求面积、线段长最值(范围)问题的基本方法.热点二 数形结合思想应用1讨论函数的零点或方程的根解析(1)由f(x)=
5、2x-2
6、-b有两个零点,可得
7、2x-2
8、=b有两个不等的实根,从而可得函数y=
9、2x-2
10、的图象与函数y=b的图象有两
11、个交点,如图所示.结合函数的图象,可得0<b<2.(2)作出f(x)的图象如图所示.当x>m时,x2-2mx+4m=(x-m)2+4m-m2.∴要使方程f(x)=b有三个不同的根,则有4m-m20.又m>0,解得m>3.答案(1)(0,2)(2)(3,+∞)探究提高1.本题利用数形结合思想,将函数零点或方程的根的情况转化为两函数图象交点问题.2.探究方程解的问题应注意两点:(1)讨论方程的解(或函数的零点)一般可构造两个函数,使问题转化为讨论两曲线的交点问题,讨论方程的解一定要注意图象的准确性、全面性,
12、否则会得到错解.(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则,不要刻意去用数形结合.应用2利用数形结合思想求最值、范围【例5】(1)记实数x1,x2,…,xn中最小数为min{x1,x2,…,xn},则定义在区间[0,+∞)上的函数f(x)=min{x2+1,x+3,13-x}的最大值为()A.5B.6C.8D.10(2)已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0).若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7B.6C.5D.4解析(
13、1)在同一坐标系中作出三个函数y=x2+1,y=x+3,y=13-x的图象如图:由图可知,在实数集R上,min{x2+1,x+3,13-x}为y=x+3上A点下方的射线,抛物线AB之间的部分,线段BC,与直线y=13-x点C下方的部分的组合图.显然,在区间[0,+∞)上,在C点时,y=min{x2+1,x+3,13-x}取得最大值.所以
14、OP
15、max=
16、OC
17、+r=6,即m的最大值为6.答案(1)C(2)B探究提高1.第(1)题利用函数的图象求最值,避免分段函数的讨论;第(2)题利用几何直观,把m的值转化为圆上的点到原点的
18、距离.2.运用数形结合思想求解最值问题(1)对于几何图形中的动态问题,应分析各个变量的变化过程,找出其中的相互关系求解.(2)应用几何意义法解决问题需要熟悉常见的几何结构的代数形式,主要有:①比值——可考虑直线的斜率;②二元一次式——可考虑直线的截距;③根式分式——可考虑点到直线的距离;④根式——可考虑
此文档下载收益归作者所有