资源描述:
《二次函数图象 教学设计》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、二次函数教学目标:知识与技能1.能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能够理解它与y=ax2的图象的关系,理解a,h和k对二次函数图像的影响。2.能正确说出y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标。过程与方法1.经历探索二次函数y=a(x-h)2+k的图象的作法和性质的过程。情感态度与价值观1.在小组活动中体会合作与交流的重要性。2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识。教学难点:理解y=a(x-h)2和y=a(x
2、-h)2+k的图象与y=ax2的图象的关系,理解a、h和k对二次函数图像的影响。教学重点:y=a(x-h)2和y=a(x-h)2+k与y=ax2的图象的关系,y=a(x-h)2+k的图象性质三、教学过程第一环节复习引入活动内容:提出问题,让学生讨论交流二次函数y=3(x-1)2+2的图象是什么形状?它与我们已经作过的二次函数的图象有什么关系?活动目的:首先提出问题,让学生进入问题情境,并引导、启发学生和以前作过的二次函数的图象联系,使学生学会用类比的方法探究未知的知识。实际教学效果:学生已经掌握二次函数y=ax
3、2和y=ax2+c的图象,能够类比猜想二次函数y=3(x-1)2+2的图象是一条抛物线。第二环节合作探究活动内容:1、做一做:先作二次函数y=3(x-1)2的图象,再回答问题。2、议一议3.想一想1.做一做(1)完成下表,并比较3x2与3(x-1)2的值,它们之间有什么关系?x-3-2-1012343x23(x-1)2(2)在同一坐标系中作出二次函数y=3x2和y=3(x-1)2的图象.(3)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?(4)x取哪
4、些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x的增大而减少?(5)想一想,在同一坐标系中作二次函数y=3(x+1)2的图象,会在什么位置?2.议一议(1)在上面的坐标系中作出二次函数y=3(x+1)2的图象.它与二次函数y=3x2和y=3(x-1)2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?(2)x取哪些值时,函数y=3(x+1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x+1)2的值随x的增大而减少?(3)猜一猜,函数y=
5、-3(x-1)2,y=-3(x+1)2和y=-3x2的图象的位置和形状.(4)请你总结二次函数y=a(x-h)2的图象和性质.总结二次函数y=a(x-h)2的性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线y=a(x-h)2(a>0)y=a(x-h)2(a<0)顶点坐标(h,0)(h,0)对称轴直线x=h直线x=h位置在x轴的上方(除顶点外)在x轴的下方(除顶点外)开口方向向上向下增减性在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增
6、大.在对称轴的右侧,y随着x的增大而减小.最值当x=h时,最小值为0当x=h时,最大值为0开口大小
7、a
8、越大,开口越小3.想一想(1)在同一坐标系中作出二次函数y=3x²,y=3(x-1)2和y=3(x-1)2+2的图象.(2)二次函数y=3x²,y=3(x-1)2和y=3(x-1)2+2的图象有什么关系?它们的开口方向,对称轴和顶点坐标分别是什么?作图看一看.二次函数y=a(x-h)²+k与y=ax²的关系w一般地,由y=ax²的图象便可得到二次函数y=a(x-h)²+k的图象:y=a(x-h)²+k(a≠0
9、)的图象可以看成y=ax²的图象先沿x轴整体左(右)平移
10、h
11、个单位(当h>0时,向右平移;当h<0时,向左平移),再沿对称轴整体上(下)平移
12、k
13、个单位(当k>0时向上平移;当k<0时,向下平移)得到的.w因此,二次函数y=a(x-h)²+k的图象是一条抛物线,它的开口方向、对称轴和顶点坐标与a,h,k的值有关.总结二次函数y=a(x-h)2+k的性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线y=a(x-h)2+k(a>0)y=a(x-h)2+k(a<0)顶点坐标(h,k)(h,k)对称轴直
14、线x=h直线x=h位置由h和k的符号确定由h和k的符号确定开口方向向上向下增减性在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.最值当x=h时,最小值为k当x=h时,最大值为k活动目的:1、通过填表使不同函数的值在同一表格中呈现出来,便于比较。2、通过在同一坐标系中做出两个函数的图象