欢迎来到天天文库
浏览记录
ID:38458820
大小:16.00 KB
页数:3页
时间:2019-06-13
《二次函数的图象及性质》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、二次函数的图像教学目标:1、经历描点法画函数图像的过程;2、学会观察、归纳、概括函数图像的特征;3、掌握型二次函数图像的特征;教学重点:二次函数图像的描绘和图像特征的归纳教学难点:选择适当的自变量的值和相应的函数值来画函数图像,该过程较为复杂。教学设计:一、回顾知识前面我们在学习正比例函数、一次函数和反比例函数时时如何进一步研究这些函数的?先(用描点法画出函数的图像,再结合图像研究性质。)二、探索图像1、用描点法画出二次函数(a=1a=2)图像引导学生观察上表,思考一下问题:①无论x取何值,对于来说,y的值有什么特征?对于来说,又有什么特征?②当x取等互为相反数时,对应的y的值有什么特征?(
2、2)描点(边描点,边总结点的位置特征,与上表中观察的结果联系起来).(3)连线,用平滑曲线按照x由小到大的顺序连接起来,从而分别得到和的图像。2、练习:在同一直角坐标系中画出二次函数和的图像。学生画图像,教师巡视并辅导学困生。(利用实物投影仪进行讲评)3、二次函数()的图像由上面的四个函数图像概括出:(1)二次函数的图像形如物体抛射时所经过的路线,我们把它叫做抛物线,(2)这条抛物线关于y轴对称,y轴就是抛物线的对称轴。(3)对称轴与抛物线的交点叫做抛物线的顶点。注意:顶点不是与y轴的交点。(4)当时,抛物线的开口向上,顶点是抛物线上的最低点,图像在x轴的上方(除顶点外);当时,抛物线的开口
3、向下,顶点是抛物线上的最高点图像在x轴的下方(除顶点外)。(用几何画板演示,让学生加深理解与记忆)四、例题讲解例题:已知二次函数的图像经过点(-2,-3)。(1)求a的值,并写出这个二次函数的解析式。(2)说出这个二次函数图像的顶点坐标、对称轴、开口方向和图像的位置。练习:(1)课本第31页课内练习第2题。(2)已知抛物线y=ax2经过点a(-2,-8)。(1)求此抛物线的函数解析式;(2)判断点b(-1,-4)是否在此抛物线上。
此文档下载收益归作者所有