欢迎来到天天文库
浏览记录
ID:38458338
大小:112.50 KB
页数:6页
时间:2019-06-13
《二次函数在几何方面的应用》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第二章二次函数《二次函数的应用(第1课时)》一、教学目标教学目标知识目标:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值.能力目标:1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力.2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力.情感态度与价值观:1.经历探究长方形和窗户透光最大面积问题的过程,获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.2.能够对解决问题的基本策略进行反思,形成个人解决问题的风格.3.进一步体会数学与人类社会的密切联系
2、,了解数学的价值,增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力.教学重点1.经历探究长方形和窗户透光最大面积问题的过程,获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.教学难点能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大(小)面积问题.二、教学过程一、复习回顾(配方法)(公式法)求下列二次函数的顶点坐标,并说明随的变化情况:【设计意图】:引导学生复习前面所学过的内容,由于学习本节课所用的基本
3、知识点是求二次函数的最值,因此和同学们一起复习二次函数最值的求法,以及二次函数的增减性,为本节课的学习做好准备.二、探究应用1、情境引入(1)请用长20米的篱笆设计一个矩形的菜园.(2)怎样设计才能使矩形菜园的面积最大?【设计意图】:通过学生所熟悉的图形,引入新课,使学生初步了解解决最大面积问题的一般思路.例1.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为米,面积为S平方米.(1)求S与的函数关系式及自变量的取值范围;(2)当取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,求围成花圃的最大面积.ABCD【设
4、计意图】:在上一个问题的基础上对问题情境进行变化,增大难度,同时板书解题过程,让学生明确规范的书写过程.2、变式探究一:如图,在一个直角三角形的内部画一个矩形ABCD,其中AB和AD分别在两直角边上,AN=40m,AM=30m,(1).设矩形的一边AB=xm,那么AD边的长度如何表示?(2).设矩形的面积为,当取何值时,的最大值是多少?CBDANMDABCMPN变式探究二:在上一个问题中,如果把矩形改为如图所示的位置,其顶点A和点D分别在两直角边上,BC在斜边上.其它条件不变,那么矩形的最大面积是多少?变式探究三:如图,已知△ABC是一等腰三角形铁板余料,AB=AC=20cm,BC=
5、24cm.若在△ABC上截出一矩形零件DEFG,使得EF在BC上,点D、G分别在边AB、AC上.问矩形DEFG的最大面积是多少?ABCDEFG【设计意图】:通过由学生讨论怎样用直角三角形剪出一个最大面积的矩形入手,由学生动手画出两种方法,和同学一起从问题中抽象出二次函数的模型,并求其最值,同时通过两种情况的分析,训练学生的发散思维能力,关键是教会学生方法,也是这类问题的难点所在,即怎样设未知数,怎样转化为我们熟悉的数学问题.在此基础上对变式三进行探究,进而总结此类题型,得出解决问题的一般方法.例2.在矩形ABCD中,AB=6,BC=12,点P从点A出发沿AB边向点B以1/秒的速度移动
6、,同时点Q从点B出发沿BC边向点C以2/秒的速度移动.如果P、Q两点在分别到达B、C两点后就停止移动,设运动时间为t秒(07、习题2.8第1题1.一根铝合金型材长为6m,用它制作一个“日”字型的窗框,如果恰好用完整条铝合金型材,那么窗架的长、宽各为多少米时,窗架的面积最大?五、拓展提升1.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=8,点D在BC上运动(不运动至B,C),DE∥AC,交AB于E,设BD=,△ADE的面积为.(1)求与的函数关系式及自变量的取值范围;(2)为何值时,△ADE的面积最大?最大面积是多少?2.有一根直尺的短边长2,长边长10,还有一块锐角
7、习题2.8第1题1.一根铝合金型材长为6m,用它制作一个“日”字型的窗框,如果恰好用完整条铝合金型材,那么窗架的长、宽各为多少米时,窗架的面积最大?五、拓展提升1.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=8,点D在BC上运动(不运动至B,C),DE∥AC,交AB于E,设BD=,△ADE的面积为.(1)求与的函数关系式及自变量的取值范围;(2)为何值时,△ADE的面积最大?最大面积是多少?2.有一根直尺的短边长2,长边长10,还有一块锐角
此文档下载收益归作者所有