欢迎来到天天文库
浏览记录
ID:38457116
大小:26.73 KB
页数:3页
时间:2019-06-13
《《二次函数y=ax2的图象与性质》的教学设计 》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第二章二次函数《二次函数y=ax2的图象与性质》的教学设计梅江区水白中学温导宁一、学生知识状况分析学生的知识技能基础:在此之前,学生已掌握一次函数和反比例函数的图像和性质,并刚刚学习了二次函数的基本概念,能利用描点法画抛物线的图象;对于抛物线的图象形状、开口方向、对称轴、顶点坐标有所了解;能够根据图象认识和理解二次函数的性质.学生活动经验基础:学生在上节课经历利用描点法画抛物线的图象的活动过程,因此对于画二次函数的图象不会存在太大问题;由于二次函数的图象比较直观,因此在分析两个或者多个二次函数的图象形状、开口方向、对称轴、顶点坐标时,也有了
2、上一课时的活动基础.二、教学任务分析本课时要研究的问题是关于函数的图象的作法和性质,逐步积累研究函数图象和性质的经验.为此,本节课的教学目标是:知识与技能1.能画二次函数的图象,理解对二次函数图象的影响.2.能说出二次函数图象的开口方向、对称轴、顶点坐标.过程与方法经历探索二次函数的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验,体会数形结合思想在数学中的应用.情感态度与价值观体会二次函数是某些实际问题的数学模型,由有趣的实际问题,使学生能积极参与数学学习活动,对数学有好奇心和求知欲.教学重点:图象的作法和性质教学
3、难点:能够比较图象的异同,理解对二次函数图象的影响.三、教学过程分析运用类比的学习方法,通过与,y=2x2的图象和性质的比较,总结出它们的异同,从而更进一步地掌握不同形式的二次函数的图象和性质.第一环节:复习旧知,引入新知1、什么是二次函数?二次函数y=x2与y=-x2的图象一样吗?它们有什么相同点?不同点?2.二次函数是否只有y=x2与y=-x2这两种呢?有没有其他形式的二次函数?设计意图:首先用问题作为切入点,引出新知.学生会根据已有的知识储备轻松得出结果,这样问题就出来了,我们用列表,描点,连线的方法画出二次函数的图像,那么,是不是只
4、有二次函y=x2与y=-x2两种呢?从而自然而然的引出数学活动第二环节:新课讲解活动内容:在平面直角坐标系中作二次函数y=x2和y=2x2的图象.(1)完成下表:x…-3-2-10123…y=x2…9410149…y=2x2…188202818…(2)分别画二次函数y=x2和y=2x2的图象.(3)二次函数y=2x2的图象是什么形状?它与二次函数y=x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么?第三环节:想一想活动内容:在刚才所做的平面直角坐标系内画出函数y=的图象,观察它与y=,y=2x2的图象有什么相同和不同?活
5、动目的:让学生画完整的二次函数图象,然后用自己的语言进行描述图象的性质,初步体验二次函数的系数对图象的影响.第四环节:观看微课,课堂小结活动内容:师生互相交流总结:抛物线开口方向对称轴顶点坐标a>0a<0y=ax2向上向下y轴(0,0)活动目的:帮助学生归纳二次函数y=ax2的性质.第五环节:布置作业完成课堂练习教学总结:函数的教学,尤其是二次函数是学生普遍感觉较为抽象难懂的知识.在教学过程中,先通过表格中数据的变化规律去理解函数的变化趋势,再让学生动手画图象,通过学生自己画的图象去印证发现的变化趋势,加深他们对函数图象的了解,也加深他们对
6、函数性质的了解,更重要的是让学生参与到函数图象和性质的探索中去,这样学生才能真正理解并掌握它.其次合理、充分利用了多媒体教学的手段,利用powerpoint,几何画板和CS8等软件制作成本知识的教学微课,让抽象思维不强的学生,更加形象的结合图形,分析说出二次函数y=ax²的有关性质,充分体现了“数形结合”的数学思想.整节课是一个动手作图、用心观看微课、动脑猜想、实践验证、巩固应用的动态生成过程,学生能力得到培养。
此文档下载收益归作者所有