欢迎来到天天文库
浏览记录
ID:38454502
大小:614.00 KB
页数:7页
时间:2019-06-13
《19.1.2 函数的图象-函数的图像及其画法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、19.1.2函数的图象------函数的图像及其画法学习目标:了解函数图象的意义,会观察函数图象获取信息,根据图象初步分析函数的对应关系和变化规律,经历画函数图象的过程,体会函数图象建立数形联系的关键是分别用点的横、纵坐标表示自变量和对应的函数值。学习重难点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。学习过程:一、创设问题情境:有些问题中的函数关系很难列式子表示,但是可以用图来直观地反映,如心电图表示心脏部位的生物电流与时间的关系。即使能列式表示的函数关系,如果也能画图表示,那么使函数关系更直观。一、自主探究与合作交流:学生看P7
2、5---P79并思考以下问题:1、什么是函数图像?2、如何作函数图像?具体步骤有哪些?3、如何判定一个图像是函数图像,你判断的依据是什么?4、有哪些方法表示函数关系?各自的优缺点是什么?(自学检测):例:如图是自动测温仪记录的图象,它反映了北京的春季某天气温T如何随时间t变化而变化,你从图中得到了哪些信息?(1)这一天中时气温最低;时气温最高;(2)从时到时气温呈下降趋势,从时到时气温呈上升趋势,从时到时气温又呈下降趋势;总结:l正确理解函数图象与实际问题间的内在联系1、函数的图象是由一系列的点组成,图象上每一点的坐标(x,y)代表了该函数关系的一对对
3、应值。2、读懂横、纵坐标分别所代表的实际意义;3、读懂两个量在变化过程中的相互关系及其变化规律。三、巩固练习:例1、下图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后回家.其中x表示时间,y表示小明离家的距离,小明家、食堂、图书馆在同一直线上. 根据图象回答下列问题: (1)食堂离小明家多远?小明从家到食堂用了多少时间? (2)小明在食堂吃早餐用了多少时间?(3)食堂离图书馆多远?小明从食堂到图书馆用了多少时间? (4)小明读报用了多长时间?(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少? 2、下列式子中,对于x每一个确定的值,y
4、有唯一的对应值,即y是x的函数,请画出这些函数的图象.解:(1)1、列表:xy2、描点:3、连线。(2)判断下列各点是否在函数的图象上?①(-4,-4.5);②(4,4.5).1、列表:xy2、描点:3、连线。判断下列各点是否在函数的图象上?①(2,3);②(4,2)归纳画函数图象的一般步骤:列表、描点、连线,这种画函数图象的方法称为描点法.四、达标测试:1.若点p在第二象限,且p点到x轴的距离为,到y轴的距离为1,则p点的坐标是()A.(-1,) B.(-,1) C.(,-1) D.(1,-)2.下列函数中,自变量取值范围选取错误的是( )A.中,
5、x取全体实数 B.中,C.中, D.中,3、下列各曲线中哪些表示y是x的函数?(提示:当x=时,x的函数y只能有一个函数值)4.小明的父亲饭后出去散步,从家中走20分钟到一个离家900米的报亭看10分钟报纸后,用15分钟返回家里.图中表示小明的父亲离家的时间与距离之间的关系是().5.某运动员将高尔夫球击出,描绘高尔夫球击出后离原处的距离与时间的函数关系的图像可能为().6.飞机起飞后所到达的高度与时间有关,描绘这一关系的图像可能为().7、假定甲、乙两人在一次赛跑中,路程S与时间T的关系在平面直角坐标系中所示,如图,请结合图形和数据回答问题:(
6、1)这是一次米赛跑;(2)甲、乙两人中先到达终点的是;(3)乙在这次赛跑中的速度为;(4)甲到达终点时,乙离终点还有 米。19.1.2函数的图像一、警句:函数表示方法三,图像图表和解析,弄清关系不可怕,自变、函数来当家。二、学习目标:1、会根据题目中题意或图表写出函数解析式;2、根据函数解析式解决问题。三、课前展示:1、函数有哪几种表示方法?2、一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减小,平均耗油量为0.1L/km。(1)写出表示y与x的函数关系式,指出自变量x的取值范围;(
7、2)汽车行驶200km时,邮箱中还有多少汽油?四、检查预习情况拖拉机开始工作时,邮箱中有油30L,每小时耗油5L。(1)写出邮箱中的余油量Q(L)与工作时间t(h)之间的函数关系式;(2)求出自变量t的取值范围;(3)画出函数图象;(4)根据图像回答拖拉机工作2小时后,邮箱余油是多少?若余油10L,拖拉机工作了几小时?五、小组讨论、合作探究:探究例:一水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度。t/时012345y/米1010.0510.1010.1510.2010.25(1)在平面直角坐标系中描出表中数据对应的点,这些点是否在一直
8、线上?由此你能发现水位变化有什么规律吗?(2)由记录表推出这5小时中水位高度y(单位:米)随时
此文档下载收益归作者所有