欢迎来到天天文库
浏览记录
ID:38449712
大小:966.50 KB
页数:17页
时间:2019-06-12
《垂径定理(1) 》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、24.1.2垂径定理问题:你知道赵州桥吗?它是1400多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?赵州桥主桥拱的半径是多少?问题情境实践探究把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.活动一如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.(1)这个图形是轴对称图形吗?如果是,它的对称轴是什么?(2)你能发现图中有那些相等的线段和弧?
2、为什么??思考·OABCDE活动二(1)是轴对称图形.直径CD所在的直线是它的对称轴(2)线段:AE=BE⌒⌒弧:AC=BC ,AD=BD⌒⌒把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A与点B重合,AE与BE重合,AC 和 BC重合,AD和 BD重合.⌒⌒⌒⌒直径CD平分弦AB,并且平分AB 及 ACB⌒⌒·OABCDE垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.即AE=BEAD=BD,AC=BC⌒⌒⌒⌒③AM=BM,由①CD是直径②CD⊥AB可推得⌒⌒⑤AD=BD.⌒⌒④AC=BC,②CD⊥AB,由①
3、CD是直径③AM=BM⌒⌒④AC=BC,⌒⌒⑤AD=BD.可推得DCABEO几何语言表达垂径定理:推论:M巩固训练判断下列说法的正误①平分弧的直径必平分弧所对的弦②平分弦的直线必垂直弦③垂直于弦的直径平分这条弦④平分弦的直径垂直于这条弦⑤弦的垂直平分线是圆的直径⑥平分弦所对的一条弧的直径必垂直这条弦⑦在圆中,如果一条直线经过圆心且平分弦,必平分此弦所对的弧⑧分别过弦的三等分点作弦的垂线,将弦所对的两条弧分别三等分中考链接:(中考,南通)如图,⊙O的弦AB=8,C是AB的中点,且OC=3,则⊙O的半径等于()A8B10C16D20(中考,黄冈)如图,CD为⊙O的直径,弦AB⊥CD于
4、点M,已知AB=12,CM=2,则⊙O的直径为()A.8B4C10D5解得:R≈27.9(m)BODACR解决求赵州桥拱半径的问题在Rt△OAD中,由勾股定理,得即R2=18.72+(R-7.2)2∴赵州桥的主桥拱半径约为27.9m.OA2=AD2+OD2AB=37.4,CD=7.2,OD=OC-CD=R-7.2在图中如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC,D为垂足,OC与AB相交于点D,根据前面的结论,D是AB的中点,C是AB的中点,CD就是拱高.⌒⌒⌒实践应用1.如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求
5、⊙O的半径.·OABE练习解:答:⊙O的半径为5cm.活动三在Rt△AOE中过O作OE⊥AB于E,连接AO2.如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形ADOE是正方形.D·OABCE证明:∴四边形ADOE为矩形,又∵AC=AB∴AE=AD∴四边形ADOE为正方形.3.弓形的弦长为6cm,弓形的高为2cm,则这弓形所在的圆的半径为.4.已知P为⊙O内一点,且OP=2cm,如果⊙O的半径是,那么过P点的最短的弦等于.挖掘潜力某地有一座圆弧形拱桥圆心为O,桥下水面宽度为7、2m,过O作OC⊥AB于D,交圆弧于C,CD=2、4m,现有
6、一艘宽3m,船舱顶部为方形并高出水面(AB)2m的货船要经过拱桥,此货船能否顺利通过这座拱桥?CNMAEHFBDO体会.分享说出你这节课的收获和体验,让大家与你一起分享!!!别忘记还有我哟!!1.必做题:教材87页习题24.1的第8题2.选做题:作业:结束寄语不学自知,不问自晓,古今行事,未之有也.下课了!再见
此文档下载收益归作者所有