欢迎来到天天文库
浏览记录
ID:38283781
大小:423.22 KB
页数:6页
时间:2019-06-02
《电子鼻快速检测区分羊肉中的掺杂鸡肉》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、现代食品科技ModernFoodScienceandTechnology2013,Vol.29,No.12电子鼻快速检测区分羊肉中的掺杂鸡肉1,211田晓静,王俊,崔绍庆(1.浙江大学生物系统工程与食品科学学院,浙江杭州310058)(2.西北民族大学生命科学与工程学院,甘肃兰州730024)摘要:为实现掺假羊肉的快速、客观检测,利用电子鼻定性和定量分析混入鸡肉的掺假羊肉糜。单因素试验表明顶空体积、载气流速、样品量和顶空生成时间对电子鼻传感器的响应影响极显著;主成分分析确定了电子鼻检测的较佳条件:样品量10g、载气流速200mL/min、顶空容积250mL及顶空生成时间30m
2、in。在此条件下检测混入鸡肉的掺假羊肉,结果发现采用主成分分析时,掺入鸡肉的比例随主成分一降低而增大,但相邻比例彼此重叠,难以有效区分;采用典则判别分析时,混入不同比例鸡肉的羊肉糜样品能2较好地区分;采用主成分回归分析和偏最小二乘回归分析建立的定量预测模型(R>0.95)能有效预测混入的鸡肉比例。电子鼻在混入鸡肉的掺假羊肉鉴别中具有可行性,论文可为羊肉掺假鉴别提供理论依据。关键词:电子鼻;方差分析;主成分分析;判别分析;模型文章篇号:1673-9078(2013)12-2997-3001FastDiscriminatingofChickenAdulterationinMinc
3、edMuttonbyElectronicNoseTIANXiao-jing1,2,WANGJun1,CUIShao-qing1(1.DepartmentofBiosystemsEngineeringandFoodScience,ZhejiangUniversity,Hangzhou310058,China)(2.CollegeofLifeScienceandEngineering,NorthwestUniversityforNationalities,Lanzhou730024,China)Abstract:Theadulterationofmuttonhasattracte
4、dincreasingattentionthatrequiresreliablemethodsfortheauthentication.Anelectronicnose(Pen2)wasemployedtoanalysistheadulterationofchickeninmincedmutton.Theeffectsofsampleweight,headspace-generatedtime,headspacevolumeandflowrateofcarriergasonsensorresponseswerestudiedbysingle-factorexperiment.
5、Resultsofone-wayanalysisofvariancefoundthattheresponsesofelectronicsensorsweresignificantlyaffectedbythesefactors.Theoptimumexperimentalparameterswere10gsamplewith30minheadspace-generatedtimein250mLbeakerwithaflowrateof200mL/minbyusingprinciplecomponentanalysis(PCA).Theadulteratedmuttonwasm
6、adebymixingmuttonwithchickenatdifferentproportions.Withtheoptimumexperimentalparameters,144samplesofadulteratedmuttonweredetectedandthesignalswereanalyzedbypatternrecognitiontechniquestobuildmodelsforclassificationofadulteratedmuttonwithdifferentproportionsofchickenandpredictionofthecontent
7、ofchickeninmincedmutton.WithPCAandCDA,theadulteratedmuttonsamplesweregroupedaccordingtotheircontentofchickenwithoverlappingwitheachother,andbetterclassificationresultswerefoundwithCDA.Principlecomponentregression(PCR)andpartialleastsquareanalysis(PLS)wer
此文档下载收益归作者所有