平面内曲线平移伸缩变换的技巧

平面内曲线平移伸缩变换的技巧

ID:38173188

大小:24.00 KB

页数:3页

时间:2019-05-24

平面内曲线平移伸缩变换的技巧_第1页
平面内曲线平移伸缩变换的技巧_第2页
平面内曲线平移伸缩变换的技巧_第3页
资源描述:

《平面内曲线平移伸缩变换的技巧》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、平面内曲线平移伸缩变换的技巧 平移变换是在向量中提出来的,而伸缩变化是在三角函数介绍的,因为有了初中的“左加右减,上加下减”的结论,在教学过程中,很多同学往往会简单的套用这个结论,导致得到和正确答案完全相反的结论,我在近几年教学中,总结了一套简单且容易操作的处理方法,以供参考。曲线平移和放缩都可以依据以下结论处理:所有的平移和放缩都是x,y在变,且变化的规律与习惯相反。一、平移规律中的“习惯”就是在坐标平面内特征,即左右平移是x在变化,且向左变小,向右变大;上下平移是y在变,且向下变小,向上变大。下面举例说明。例1 

2、 将函数的图象向左平移2个单位,向上平移1个单位。求平移后的函数解析式。解:向左平移2个单位,“习惯”是越左越小,而变化的结果将原来解析式中的x变成;向上平移1个单位,“习惯”是越上越大,而变化的结果是将原来解析式中的y变成。所以平移后的函数解析式是。例2  求向右平移个单位,向下平移2个单位后的得到的函数解析式。解:依据以上规律,就是将原来的解析式中的x变成,y变成,所以平移后的函数解析式是,化简后得。例1也可以用“左加右减,上加下减”来处理,但如果不能从本质上弄清问题,就会出现错误,如例2还是套用“左加右减,上加

3、下减”来处理,得到的结论就可能是。二、放缩课本在三角函数这一章中给出了放缩的规律,笔者发现这个规律可以和平移规律整合在一起。具体的规律是:纵坐标不变横坐标变为原来的ω倍就是将原来解析式中的x变成;横坐标不变纵坐标变为原来的A倍就是将原来解析式中的y变成。例3 (2000年理科全国卷)经过怎样的平移和伸缩得到。解:。(变化一)(1)y变成了2y,故横坐标不变,纵坐标变为原来的;(2)x变成了2x,故纵坐标不变,横坐标变为原来的;(3)x变成了,故将图象右移个单位,需要将写成;(4)y变成了,故将图象上移个单位。变换一和

4、变换二的差别就先放缩后平移还是平移后放缩,变换一的第(3)步比较容易错,如果理解“都是x、y在变,变化规律与习惯相反”的规律后,每一步只需抓住变的实质,就可以轻松处理类似问题

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。