8函数y=Asin(ωx+φ)的图像与性质(二)

8函数y=Asin(ωx+φ)的图像与性质(二)

ID:37859414

大小:2.76 MB

页数:48页

时间:2019-06-01

8函数y=Asin(ωx+φ)的图像与性质(二)_第1页
8函数y=Asin(ωx+φ)的图像与性质(二)_第2页
8函数y=Asin(ωx+φ)的图像与性质(二)_第3页
8函数y=Asin(ωx+φ)的图像与性质(二)_第4页
8函数y=Asin(ωx+φ)的图像与性质(二)_第5页
资源描述:

《8函数y=Asin(ωx+φ)的图像与性质(二)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第一章三角函数§8函数y=Asin(ωx+φ)图像与性质(二)学习目标1.会用“五点法”画函数y=Asin(ωx+φ)的图像.2.能根据y=Asin(ωx+φ)的部分图像,确定其解析式.3.了解y=Asin(ωx+φ)的图像的物理意义,能指出简谐运动中的振幅、周期、相位、初相.题型探究问题导学内容索引当堂训练问题导学思考1知识点一“五点法”作函数y=Asin(ωx+φ)(A>0,ω>0)的图像用“五点法”作y=sinx,x∈[0,2π]时,五个关键点的横坐标依次取哪几个值?答案答案依次为0,,π,,2π.思考2用“五点法”作y=Asi

2、n(ωx+φ)时,五个关键的横坐标取哪几个值?答案梳理用“五点法”作y=Asin(ωx+φ)的图像的步骤:第一步:列表:第二步:在同一坐标系中描出各点.第三步:用光滑曲线连接这些点,形成图像.知识点二 函数y=Asin(ωx+φ),A>0,ω>0的性质名称性质定义域___值域________周期性T=___对称性对称中心(k∈Z)对称轴________________________R[-A,A]奇偶性当φ=kπ(k∈Z)时是函数;当(k∈Z)时是函数单调性通过整体代换可求出其单调区间奇偶知识点三函数y=Asin(ωx+φ),A>0,

3、ω>0中参数的物理意义ωx+φAφ题型探究类型一 用“五点法”画y=Asin(ωx+φ)的图像解答描点,连线,如图所示.(2)作给定区间上y=Asin(ωx+φ)的图像时,若x∈[m,n],则应先求出ωx+φ的相应范围,在求出的范围内确定关键点,再确定x,y的值,描点、连线并作出函数的图像.反思与感悟解答列表如下:(2)描点,连线,如图所示.类型二 由图像求函数y=Asin(ωx+φ)的解析式例2如图是函数y=Asin(ωx+φ)的图像,求A,ω,φ的值,并确定其函数解析式.解答解方法一(逐一定参法)由图像知振幅A=3,方法二(待定系

4、数法)方法三(图像变换法)若设所求解析式为y=Asin(ωx+φ),则在观察函数图像的基础上,可按以下规律来确定A,ω,φ.(1)由函数图像上的最大值、最小值来确定

5、A

6、.(2)由函数图像与x轴的交点确定T,由T=,确定ω.(3)确定函数y=Asin(ωx+φ)的初相φ的值的两种方法①代入法:把图像上的一个已知点代入(此时A,ω已知)或代入图像与x轴的交点求解.(此时要注意交点在上升区间上还是在下降区间上)反思与感悟②五点对应法:确定φ值时,往往以寻找“五点法”中的第一个零点作为突破口.“五点”的ωx+φ的值具体如下:“第一点”(即图

7、像上升时与x轴的交点)为ωx+φ=0;“第二点”(即图像的“峰点”)为ωx+φ=;“第三点”(即图像下降时与x轴的交点)为ωx+φ=π;“第四点”(即图像的“谷点”)为ωx+φ=;“第五点”为ωx+φ=2π.跟踪训练2函数y=Asin(ωx+φ)的部分图像如图所示,则其解析式为答案解析类型三函数y=Asin(ωx+φ)性质的应用解答例3已知函数y=Asin(ωx+φ)(A>0,ω>0,

8、φ

9、<)的图像过点P(,0),图像上与P点最近的一个最高点的坐标为(,5).(1)求函数解析式;∴A=5.∴y=5sin(2x+φ).解答(2)指出函

10、数的递增区间;解答(3)求使y≤0的x的取值范围.有关函数y=Asin(ωx+φ)的性质的问题,要充分利用正弦曲线的性质,要特别注意整体代换思想.反思与感悟跟踪训练3设函数f(x)=sin(2x+φ)(-π<φ<0),函数y=f(x)的图像的一条对称轴是直线x=.(1)求φ的值;解答(2)求函数y=f(x)的单调区间及最值.解答当堂训练√2341答案解析51.函数y=Asin(ωx+φ)(A>0,0<φ<π)的图像的一段如图所示,它的解析式可以是23415答案√23415解析23415答案23415√解析234154.已知函数f(x)

11、=sin(ω>0)的最小正周期为π,则该函数的图像23415答案解析√23415解答(1)求f(x)的解析式;2341523415解答(2)写出f(x)的递增区间.23415解得16k-6≤x≤16k+2,k∈Z,∴f(x)的递增区间为[16k-6,16k+2],k∈Z.规律与方法1.利用“五点”作图法作函数y=Asin(ωx+φ)的图像时,要先令“ωx+φ”这一个整体依次取0,,π,π,2π,再求出x的值,这样才能得到确定图像的五个关键点,而不是先确定x的值,后求“ωx+φ”的值.2.由函数y=Asin(ωx+φ)的部分图像确定解析

12、式关键在于确定参数A,ω,φ的值.(1)一般可由图像上的最大值、最小值来确定

13、A

14、.(2)因为T=,所以往往通过求得周期T来确定ω,可通过已知曲线与x轴的交点从而确定T,即相邻的最高点与最低点之间的距离为;相邻的两个最高

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。