欢迎来到天天文库
浏览记录
ID:37779368
大小:69.36 KB
页数:4页
时间:2019-05-31
《高考数学复习立体几何与空间向量第53练垂直的判定与性质练习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第53练垂直的判定与性质[基础保分练]1.已知α,β是两个不同的平面,l,m,n是不同的直线,下列命题不正确的是( )A.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αB.若l∥m,l⊄α,m⊂α,则l∥αC.若α⊥β,α∩β=l,m⊂α,m⊥l,则m⊥βD.若α⊥β,m⊥α,n⊥β,则m⊥n2.已知两个平面垂直,下列命题:①一个平面内的任意一条直线必垂直于另一个平面内的任意一条直线;②一个平面内的任意一条直线必垂直于另一个平面内的无数条直线;③一个平面内的任意一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面
2、.其中正确的个数是( )A.3B.2C.1D.03.在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,则四面体P-ABC中共有直角三角形个数为( )A.4B.3C.2D.14.“直线l垂直于平面α”的一个必要不充分条件是( )A.直线l与平面α内的任意一条直线垂直B.过直线l的任意一个平面与平面α垂直C.存在平行于直线l的直线与平面α垂直D.经过直线l的某一个平面与平面α垂直5.已知直线l,m和平面α,则下列结论正确的是( )A.若l∥m,m⊂α,则l∥αB.若l⊥α,m⊂α,则l⊥mC.若l⊥m,l⊥α,则
3、m⊥αD.若l∥α,m⊂α,则l∥m6.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( )①若m⊥α,α⊥β,则m∥β;②若m⊥α,α∥β,n⊂β,则m⊥n;③若m⊂α,n⊂β,m∥n,则α∥β;④若n⊥α,n⊥β,m⊥β,则m⊥α.A.①②B.③④C.①③D.②④7.(2019·沈阳东北育才学校联考)设m,n是两条不同的直线,α,β为两个不同的平面,则下列四个命题中不正确的是( )A.m⊥α,n⊥β且α⊥β,则m⊥nB.m∥α,n⊥β且α⊥β,则m∥nC.m⊥α,n∥β且α∥β,则m⊥nD.m⊥α,n⊥β且α∥β,则m
4、∥n8.已知在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论中不正确的是( )A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面ABCD.平面PAE⊥平面ABC9.如图,PA⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中真命题的序号是________.10.设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:①若a∥α且b∥α,则a∥b;②若a⊥α且a⊥β,则α∥β;③若α⊥β,则一定
5、存在平面γ,使得γ⊥α,γ⊥β;④若α⊥β,则一定存在直线l,使得l⊥α,l∥β.上面命题中,所有真命题的序号是________.[能力提升练]1.已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是( )A.①④B.②④C.②③D.③④2.如图所示,O为正方体ABCD-A1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是( )A.A1DB.AA1C.A1D1D.A1C13.已知在空间四边形ABCD中,AD⊥BC,AD⊥BD,且△BCD是锐
6、角三角形,则必有( )A.平面ABD⊥平面ADCB.平面ABD⊥平面ABCC.平面ADC⊥平面BDCD.平面ABC⊥平面BDC4.已知矩形ABCD中,AB=1,BC=.将△ABD沿矩形的对角线BD所在直线进行翻折,在翻折过程中( )A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”“AB与CD”“AD与BC”均不垂直5.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若m⊥α,m⊂β,则α⊥β;②若m⊥α,
7、n⊂α,m∥β,n∥β,则α∥β;③如果m⊂α,n⊄α,m,n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.其中的真命题是________.(填序号)6.如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α,β所成的角分别为和,过A,B分别作两平面交线的垂线,垂足为A′,B′,则AB∶A′B′=________.答案精析基础保分练1.A 2.B 3.A 4.D 5.B 6.D 7.B8.C 9.①②④ 10.②③④能力提升练1.B 2.D3.C [∵AD⊥BC,AD⊥BD,BC∩BD=B,BC,BD⊂平面B
8、DC,∴AD⊥平面BDC,又AD⊂平面ADC,∴平面ADC⊥平面BDC.]4.B [在矩形ABCD中,作AE⊥BD于E,连
此文档下载收益归作者所有