欢迎来到天天文库
浏览记录
ID:37751139
大小:381.50 KB
页数:21页
时间:2019-05-30
《二次函数专项练习(压轴题)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二次函数专项练习(压轴题)1、已知,如图,Rt△ABC中,∠C=90°,AC=4,BC=2,,点D从A出发沿AC向C点以每秒2个单位速度运动,到C点停止,E点从C点出发沿CB以每秒1个单位的速度运动,到B点停止,两点同时出发,设运动时间为t(秒),△CDE面积为y,(1)求出y与t的函数关系式并写出自变量t的取值范围;(2)求当t为何值时,y最大,并求出最大值;(3)M是AB中点,当DE⊥MC时,求△DEM的面积。2、如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点
2、,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.213、已知,如图,抛物线y=ax2+bx+c过A(0,3)、B(-3,0)、C(1,0),(1)求抛物线的解析式和顶点M的坐标;(2)E是对称轴MN上一点,且ME=AO,点P是线段ME上一动点,PQ⊥MN交对称轴右侧抛物线于点Q,连QE并延长交x轴于T点,连
3、PT,设Q点横坐标为t,△PET的面积为S,求出S与t之间的函数关系式; (3)在(2)的条件下,连MQ,过Q作MQ的垂线交MN于S交x轴于L,求证:PQ2=TN×LN说明理由.4、如图①,已知△ABC的三个顶点坐标分别为A(﹣1,0)、B(3,0)、C(0,3),直线BE交y轴正半轴于点E.(1)求经过A、B、C三点的抛物线解析式及顶点D的坐标;(2)连接BD、CD,设∠DBO=α,∠EBO=β,若tan(α﹣β)=1,求点E的坐标;(3)如图②,在(2)的条件下,动点M从点C出发以每秒个单位的速度在直线BC上移动(不考虑点
4、M与点C、B重合的情况),点N为抛物线上一点,设点M移动的时间为t秒,在点M移动的过程中,以E、C、M、N四个点为顶点的四边形能否成为平行四边形?若能,直接写出所有满足条件的t值及点M的个数;若不能,请说明理由. 215、如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,D为边AB的中点,一抛物线y=﹣x2+2mx+m(m>0)经过点A、D(1)求点A、D的坐标(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,①若抛物线经过点E
5、,求抛物线的解析式;②若抛物线与线段CE相交,直接写出抛物线的顶点P到达最高位置时的坐标 6、如图,抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点.(1)求:抛物线的函数表达式;(2)求:抛物线与y轴的交点C的坐标及其对称轴(3)若抛物线对称轴上有一点P,使△COA∽△APB,求点P的坐标.217、如图,对称轴为直线的抛物线与轴交于点C(0,-3),与轴交于A、B两点(点A在点B的左侧),AB=5(1)求A、B两点的坐标及该抛物线对应的解析式;(2)D为BC的中点,延长OD与抛物线在第四象限内交于点E,连结A
6、E、BE.①求点E的坐标;②判断ABE的形状,并说明理由;(3)在轴下方的抛物线上,是否存在一点P,使得四边形OBEP是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.8、如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.(1)求该抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.①设△PDE的周长为,点P的横坐标为,求关于的函数关系式,并求出的最大值;②连接PA,以PA为边作图示一侧的
7、正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在轴上时,求出对应点P的坐标. 219、 点P为图①中抛物线(m为常数,m>0)上任一点,将抛物线绕顶点G逆时针旋转90°后得到的新图象与y轴交于A、B两点(点A在点B的上方),点Q为点P旋转后的对应点.(1)若点Q的坐标为(—2,),求该抛 物线的函数关系式;(2)如图②,若原抛物线恰好也经过A点,点Q在第一象限内,是否存在这样的点P使得△AGQ是以AG为底的等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.10、在平面直角坐标系中,如图
8、所示,已知抛物线(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧,点B的坐标为,OC=2OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,△ADC的面积为S.求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线上的动点,判
此文档下载收益归作者所有