2018年秋高中数学 常用逻辑用语1.1命题及其关系-命题学案

2018年秋高中数学 常用逻辑用语1.1命题及其关系-命题学案

ID:37050633

大小:53.81 KB

页数:6页

时间:2019-05-15

2018年秋高中数学 常用逻辑用语1.1命题及其关系-命题学案_第1页
2018年秋高中数学 常用逻辑用语1.1命题及其关系-命题学案_第2页
2018年秋高中数学 常用逻辑用语1.1命题及其关系-命题学案_第3页
2018年秋高中数学 常用逻辑用语1.1命题及其关系-命题学案_第4页
2018年秋高中数学 常用逻辑用语1.1命题及其关系-命题学案_第5页
资源描述:

《2018年秋高中数学 常用逻辑用语1.1命题及其关系-命题学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.1.1 命题学习目标:1.了解命题的概念.(难点)2.理解命题的构成形式,能将命题改写为“若p,则q”的形式.(重点)3.能判断一些简单命题的真假.(难点,易错点)[自主预习·探新知]1.命题的定义与分类(1)命题的定义:在数学中,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.(2)命题定义中的两个要点:“可以判断真假”和“陈述句”.我们学习过的定理、推论都是命题.(3)分类命题思考1:(1)“x-1=0”是命题吗?(2)“命题一定是陈述句,但陈述句不一定是命题”这个说法正确吗?[提示] (1)“x-1=0”不是命题,因为它不能判断真假.(

2、2)正确.根据命题的定义,命题一定是陈述句,但陈述句中只有能够判断真假的才是命题.2.命题的结构(1)命题的一般形式为“若p,则q”.其中p叫做命题的条件,q叫做命题的结论.(2)确定命题的条件和结论时,常把命题改写成“若p,则q”的形式.思考2:命题“实数的平方是非负数”的条件与结论分别是什么?[提示] 条件是“一个数是实数”,结论是:“它的平方是非负数”.[基础自测]1.思考辨析(1)一个命题不是真命题就是假命题.(  )(2)一个命题可以是感叹句.(  )(3)x>5是命题.(  )[解析] 根据命题的定义知(1)正确,(2)、(3)错误.[答案] (1

3、)√ (2)× (3)×2.下列语句是命题的是(  )①三角形内角和等于180°;②2>3;③一个数不是正数就是负数;④x>2;⑤2018央视狗年春晚真精彩啊!A.①②③     B.①③④C.①②⑤D.②③⑤A [①、②、③是陈述句,且能判断真假,因此是命题,④不能判断真假,⑤是感叹句,故④、⑤不是命题.]3.下列命题中,真命题共有(  )【导学号:97792000】①面积相等的三角形是全等三角形;②若xy=0,则

4、x

5、+

6、y

7、=0;③若a>b,则a+c>b+c;④矩形的对角线互相垂直.A.1个B.2个C.3个D.4个A [①、②、④是假命题,③是真命题.]

8、[合作探究·攻重难]命题的判断 (1)下列语句为命题的是(  )A.x2-1=0    B.2+3=8C.你会说英语吗?D.这是一棵大树(2)下列语句为命题的有________.①x∈R,x>2;②梯形是不是平面图形呢?③22018是一个很大的数;④4是集合{2,3,4}中的元素;⑤作△ABC≌△A′B′C′.[解析] (1)A中x不确定,x2-1=0的真假无法判断;B中2+3=8是命题,且是假命题;C不是陈述句,故不是命题;D中“大”的标准不确定,无法判断真假.(2)①中x有范围,可以判断真假,因此是命题;②是疑问句,不是命题;③是陈述句,但“大”的标准不确

9、定,无法判断真假,因此不是命题;④是陈述句且能判断真假,因此是命题;⑤是祈使句,不是命题.[答案] (1)B (2)①④[规律方法] 判断一个语句是否是命题的二个关键点(1)命题是可以判断真假的陈述句,因此,疑问句、祈使句、感叹句等都不是命题.(2)对于含变量的语句,要注意根据变量的取值范围,看能否判断其真假,若能,就是命题;若不能,就不是命题.提醒:若语句中含有变量,但变量没有给出范围,则该语句不是命题.[跟踪训练]1.判断下列语句是不是命题,并说明理由.(1)函数f(x)=3x(x∈R)是指数函数;(2)x2-3x+2=0;(3)若x∈R,则x2+4x

10、+7>0.(4)垂直于同一条直线的两条直线一定平行吗?(5)一个数不是奇数就是偶数;(6)2030年6月1日上海会下雨.[解] (1)是命题,满足指数函数的定义,为真命题.(2)不是命题,不能判断真假.(3)是命题.当x∈R时,x2+4x+7=(x+2)2+3>0能判断真假.(4)疑问句,不是命题.(5)是命题,能判断真假.(6)不是命题,不能判断真假.命题的构成 (1)已知命题:弦的垂直平分线经过圆心并且平分弦所对的弧,若把上述命题改为“若p则q”的形式,则p是________,q是________.【导学号:97792001】(2)把下列命题改写成“若p,

11、则q”的形式,并判断命题的真假.①函数y=lgx是单调函数;②已知x,y为正整数,当y=x+1时,y=3,x=2;③当abc=0时,a=0且b=0且c=0.[思路探究] 解决此类题目的关键是找到命题的条件和结论,然后用适当的形式改写成“若p,则q的形式”.[解析] (1)命题的条件是“弦的垂直平分线”,结论是“经过圆心并且平分弦所对的弧”.因此p是“一条直线是弦的垂直平分线”,q是“这条直线经过圆心并且平分弦所对的弧”.[答案] 一条直线是弦的垂直平分线 这条直线经过圆心且平分弦所对的弧.(2)①若函数是对数函数y=lgx,则这个函数是单调函数.②已知x,y为

12、正整数,若y=x+1,则y=3,x=2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。