偏导数和高阶偏导数

偏导数和高阶偏导数

ID:37012505

大小:905.10 KB

页数:23页

时间:2019-05-11

偏导数和高阶偏导数_第1页
偏导数和高阶偏导数_第2页
偏导数和高阶偏导数_第3页
偏导数和高阶偏导数_第4页
偏导数和高阶偏导数_第5页
资源描述:

《偏导数和高阶偏导数》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第二节偏导数与高阶偏导数一、偏导数1.概念定义4一、偏导数一、偏导数一、偏导数xzy0由一元函数导数的几何意义:z=f(x,y)L:L=tan3.偏导数的几何意义.y=y0同理,.MTx固定y=y0复习一元函数导数Mz=f(x,y)Lx=x0固定x=x0Tx3.偏导数的几何意义.xzy0M由一元函数导数的几何意义:z=f(x,y)L=tan.x=x0固定x=x0TxTy3.偏导数的几何意义.xzy03.可偏导数与连续的关系一元函数有:那么二元函数:例13.可偏导数与连续的关系3.可偏导数与连续的关系例23.可偏导数与连续的关系4.例子例34.例子例34.例子例54.例子例6

2、5.推广由二元偏导类似可以推广定义三元以上的多元偏导:如例66.高阶偏导数按照对自变量求导次序的不同,有下列四个二阶偏导数:其中第二行的两个偏导数称为混合偏导数。同理可以定义二阶以上的偏导数:二阶及二阶以上的偏导数统称为高阶偏导数。高阶偏导数续例7高阶偏导数续定理高阶偏导数续例8本节结束返回(Return)继续下一节(Continue)其它的自学!y=f(x)xy0M8导数的几何意义.=tany=f(x)复习一元函数导数返回原页

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。