欢迎来到天天文库
浏览记录
ID:36981575
大小:202.50 KB
页数:7页
时间:2019-05-10
《八年级数学上册几何期末综合复习题1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、八年级期末几何综合复习(一)1.如图,设△ABC和△CDE都是等边三角形,且∠EBD=65°,则∠AEB的度数是( )A.115°B.120°C.125°D.130°2.如图,在四边形ABCD中,AB=AC,∠ABD=60°,∠ADB=78°,∠BDC=24°,则∠DBC=( )A.18°B.20°C.25°D.15°新课标第一网3.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,AM的延长线交BC于点N,连接DM,下列结
2、论:①DF=DN;②△DMN为等腰三角形;③DM平分∠BMN;④AE=EC;⑤AE=NC,其中正确结论的个数是( )A.2个B.3个C.4个D.5个4.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC.点A、B分别在坐标轴上,且x轴恰好平分∠BAC,BC交x轴于点M,过C点作CD⊥x轴于点D,则的值为 .5.已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D处,折痕交另一直角边于E,交斜边于F,则△CDE的周长为 .6.
3、如图,∠AOB=30°,点P为∠AOB内一点,OP=8.点M、N分别在OA、OB上,则△PMN周长的最小值为 . 7.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC为 度.8如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上,点M在x轴负半轴上,S△ABM=6.当线段OM最长时,点M的坐标为 .9.如图,△ABC中,AC=BC,∠ACB=90°,点D为BC的中点,点E与点C关于直线AD对称,CE与A
4、D、AB分别交于点F、G,连接BE、BF、GD,求证:(1)△BEF为等腰直角三角形;(2)∠ADC=∠BDG.10.如图,等腰△ABC中,AB=CB,M为ABC内一点,∠MAC+∠MCB=∠MCA=30°(1)求证:△ABM为等腰三角形;(2)求∠BMC的度数.11.如图,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a、b满足
5、a+b
6、+(a﹣5)2=0(1)点A的坐标为 ,点B的坐标为 ;(2)如图,若点C的坐标为(﹣3,﹣2),且BE⊥AC于点E,OD⊥OC交B
7、E延长线于D,试求点D的坐标;(3)如图,M、N分别为OA、OB边上的点,OM=ON,OP⊥AN交AB于点P,过点P作PG⊥BM交AN的延长线于点G,请写出线段AG、OP与PG之间的数列关系并证明你的结论. 12.如图,在等边三角形△ABC中,AE=CD,AD、BE交于P点,BQ⊥AD于Q,(1)求证:BP=2PQ;(2)连PC,若BP⊥PC,求的值.ww.xkb1.com13.在△ABC中,AD平分∠BAC交BC于D.(1)如图1,∠MDN的两边分别与AB、AC相交于M、N两点,过D作DF⊥AC于F
8、,DM=DN,证明:AM+AN=2AF;(2)如图2,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB,求四边形AMDN的周长.14.如图1,在平面直角坐标系中,点A、B分别在x轴、y轴上.(1)如图1,点A与点C关于y轴对称,点E、F分别是线段AC、AB上的点(点E不与点A、C重合),且∠BEF=∠BAO.若∠BAO=2∠OBE,求证:AF=CE;(2)如图2,若OA=OB,在点A处有一等腰△AMN绕点A旋转,且AM=MN,∠AMN=90°.连接BN,点P为BN的中点,试猜
9、想OP和MP的数量关系和位置关系,说明理由.15.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F.(1)如图1,若∠ACD=60°,则∠AFD= ;(2)如图2,若∠ACD=α,连接CF,则∠AFC= (用含α的式子表示);(3)将图1中的△ACD绕点C顺时针旋转如图3,连接AE、AB、BD,∠ABD=80°,求∠EAB的度数.16.等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在
10、x轴、y轴的正半轴上.(1)如图1,求证:∠BCO=∠CAO(2)如图2,若OA=5,OC=2,求B点的坐标(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQA=18.分别以AC、CQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN交y轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围. 17.如图,在平面直角坐标系中,已知A(0,a)、B(﹣b,0)且a、b满足+
11、a﹣2b+2
12、=0.(1)求
此文档下载收益归作者所有