欢迎来到天天文库
浏览记录
ID:36877113
大小:1.01 MB
页数:17页
时间:2019-05-10
《《椭圆的几何性质》课件1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、*1椭圆的几何性质*2复习:1.椭圆的定义:到两定点F1、F2的距离和为常数(大于
2、F1F2
3、)的点的轨迹叫做椭圆。2.椭圆的标准方程是:3.椭圆中a,b,c的关系是:a2=b2+c2*3椭圆简单的几何性质一、范围:-a≤x≤a,-b≤y≤b知椭圆落在x=±a,y=±b组成的矩形中oyB2B1A1A2F1F2cab*4YXOP(x,y)P2(-x,y)P3(-x,-y)P1(x,-y)关于x轴对称关于y轴对称关于原点对称二、椭圆的对称性*5从图形上看,椭圆关于x轴、y轴、原点对称。从方程上看:(1)把x换成-x方程不变,图象关于y轴对称;(2)把y换成-y方
4、程不变,图象关于x轴对称;(3)把x换成-x,同时把y换成-y方程不变,图象关于原点成中心对称。即标准方程的椭圆是以坐标轴为对称轴,坐标原点为对称中心的。*6三、椭圆的顶点令x=0,得y=?说明椭圆与y轴的交点?令y=0,得x=?说明椭圆与x轴的交点?*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。*长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。a、b分别叫做椭圆的长半轴长和短半轴长。oyB2B1A1A2F1F2cab(0,b)(a,0)(0,-b)(-a,0)*7123-1-2-3-44y123-1-2-3-44y12345-1-5-2-
5、3-4x12345-1-5-2-3-4x根据前面所学有关知识画出下列图形(1)(2)A1B1A2B2B2A2B1A1*8四、椭圆的离心率oxy离心率:椭圆的焦距与长轴长的比:叫做椭圆的离心率。[1]离心率的取值范围:因为a>c>0,所以06、x7、≤a,8、y9、10、≤b11、x12、≤b,13、y14、≤a关于x轴、y轴成轴对称;关于原点成中心对称。(a,0),(0,b)(b,0),(0,a)(±c,0)(0,±c)长半轴长为a,短半轴长为b.焦距为2c;a2=b2+c2*10例1已知椭圆方程为16x2+25y2=400,108680分析:椭圆方程转化为标准方程为:a=5b=4c=3oxyoxy它的长轴长是:。短轴长是:。焦距是。离心率等于:。焦点坐标是:。顶点坐标是:。外切矩形的面积等于:。*11已知椭圆方程为6x2+y2=6它的长轴长是:。短轴是:。焦距是:.离心率等于:。焦点坐标是:。顶点坐是:。外切矩形的面积等于:。2练习115、.*12例2椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置椭圆的标准方程为:;椭圆的标准方程为:;解:(1)当为长轴端点时,,,(2)当为短轴端点时,,,综上所述,椭圆的标准方程是或*13已知椭圆的离心率,求的值由,得:解:当椭圆的焦点在轴上时,,,得.当椭圆的焦点在轴上时,,,得.由,得,即.∴满足条件的或.练习2:*14目标测试1、在下列方程所表示的曲线中,关于x轴,y轴都对称的是()(A)(B)(C)(D)2、椭圆以坐标轴为对称轴,离心率,长轴长为6,则椭圆的方程为()(A)(B)(C)(D)或16、或DC*15小结:oxyB1(0,b)B2(0,-b)A1A2{1}范围:-a≤x≤a,-b≤y≤b{2}椭圆的对称性:关于x轴、y轴、原点对称{3}椭圆的顶点(-a,0)(a,0){4}椭圆的离心率:*16作业课本第46.47,48页练习题、习题能力培养*17谢谢!
6、x
7、≤a,
8、y
9、
10、≤b
11、x
12、≤b,
13、y
14、≤a关于x轴、y轴成轴对称;关于原点成中心对称。(a,0),(0,b)(b,0),(0,a)(±c,0)(0,±c)长半轴长为a,短半轴长为b.焦距为2c;a2=b2+c2*10例1已知椭圆方程为16x2+25y2=400,108680分析:椭圆方程转化为标准方程为:a=5b=4c=3oxyoxy它的长轴长是:。短轴长是:。焦距是。离心率等于:。焦点坐标是:。顶点坐标是:。外切矩形的面积等于:。*11已知椭圆方程为6x2+y2=6它的长轴长是:。短轴是:。焦距是:.离心率等于:。焦点坐标是:。顶点坐是:。外切矩形的面积等于:。2练习1
15、.*12例2椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置椭圆的标准方程为:;椭圆的标准方程为:;解:(1)当为长轴端点时,,,(2)当为短轴端点时,,,综上所述,椭圆的标准方程是或*13已知椭圆的离心率,求的值由,得:解:当椭圆的焦点在轴上时,,,得.当椭圆的焦点在轴上时,,,得.由,得,即.∴满足条件的或.练习2:*14目标测试1、在下列方程所表示的曲线中,关于x轴,y轴都对称的是()(A)(B)(C)(D)2、椭圆以坐标轴为对称轴,离心率,长轴长为6,则椭圆的方程为()(A)(B)(C)(D)或
16、或DC*15小结:oxyB1(0,b)B2(0,-b)A1A2{1}范围:-a≤x≤a,-b≤y≤b{2}椭圆的对称性:关于x轴、y轴、原点对称{3}椭圆的顶点(-a,0)(a,0){4}椭圆的离心率:*16作业课本第46.47,48页练习题、习题能力培养*17谢谢!
此文档下载收益归作者所有