资源描述:
《26.1.2_二次函数y=ax2的图象和性质--》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、26.1.2二次函数图象复习一般地,形如的函数,叫做二次函数.其中,是x自变量,a,b,c分别是函数表达式的二次项系数、一次项系数和常数项.y=ax2+bx+c(a、b、c为常数,a≠0)二次函数:思考一次函数的图像是一条直线,反比例函数的图像是双曲线,二次函数的图像是什么形状呢?通常怎样画一个函数的图像?还记得如何用描点法画一个函数的图象呢?x…-3-2-10123…y二次函数的图像画函数y=x2的图像解:(1)列表…9410149…(2)描点(3)连线12345x12345678910yo-1-2-3-4-5根据表中x,y的数值在坐标平面
2、中描点(x,y),再用平滑曲线顺次连接各点,就得到y=x2的图像.y=x2x…-3-2-10123…y二次函数的图像请画函数y=-x2的图像解:(1)列表…-9-4-10-1-4-9…(2)描点(3)连线根据表中x,y的数值在坐标平面中描点(x,y),再用平滑曲线顺次连接各点,就得到y=x2的图像.12345x-1-2-3-4-5-6-7-8-91yo-1-2-3-4-5-10y=-x2下面是两个同学画的y=0.5x2和y=-0.5x2的图象,你认为他们的作图正确吗?为什么?xyoxyoy=x2的图像叫做抛物线y=x2y=-x2的图像叫做抛物
3、线y=-x2二次函数的图像从图象可以看出,二次函数y=x2和y=-x2的图像都是一条曲线,这条曲线叫做抛物线y=x2y=-x2实际上,二次函数的图像都是抛物线,它们的开口向上或者向下,一般地,二次函数y=ax2+bx+c的图像叫做抛物线y=ax2+bx+cxyoxyo二次函数的图像抛物线与对称轴的交点叫做抛物线的顶点.抛物线y=x2的顶点(0,0)是它的最低点.抛物线y=-x2的顶点(0,0)是它的最高点.y=x2y=-x2从图象可以看出,二次函数y=x2和y=-x2的图像都是轴对称图形,y轴是它们的对称轴.实际上,每条抛物线都有对称轴,抛物
4、线与对称轴的交点叫做抛物线的顶点。顶点是抛物线的最低点或最高点例题与练习x…-4-3-2-101234…y=x2例1.在同一直角坐标系中画出函数y=x2和y=2x2的图像解:(1)列表(2)描点(3)连线12345x12345678910yo-1-2-3-4-512x…-2-1.5-1-0.500.511.52…y=2x28…20.500.524.58…4.58…20.500.524.58…4.512观察共同点:不同点:开口向上,顶点是原点,顶点是抛物线的最低点,对称轴是y轴,除顶点外,图像都在x轴上方开口大小不同函数y=x2,y=2x2的图
5、像与函数y=x2的图像相比,有什么共同点和不同点?12性质:a>0,图象开口向上,顶点是抛物线的最低点,a越大开口越小,反之越大12345x12345678910yo-1-2-3-4-5y=x2y=2x2y=0.5x212345x-1-2-3-4-5-6-7-8-91yo-1-2-3-4-5-10在同一直角坐标系中画出函数y=-x2和y=-2x2的图像12y=-x212y=-2x2x…-4-3-2-101234…y=-x2……0-2-2-8-8x…-2-1.5-1-0.500.511.52…y=2x2……0-2-2-8-8函数y=-x2,y=
6、-2x2的图像与y=-x2的图像相比,有什么共同点和不同点?12观察共同点:不同点:开口向下,顶点是原点,对称轴是y轴,顶点是抛物线的最高点除顶点外,图像都在x轴下方开口大小不同12345x-1-2-3-4-5-6-7-8-91yo-1-2-3-4-5-10y=-x212y=-2x2y=x2性质:当a<0时,图象开口向下,顶点是抛物线的最高点,a越大,抛物线的开口越大。1、抛物线y=ax2的顶点是原点,对称轴是y轴。2、当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;a越大,抛物线的开口越小当a<0时,抛
7、物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展。a越大,抛物线的开口越大。二次函数y=ax2的性质思考:在同一坐标系内,抛物线y=x2与抛物线y=-x2的位置有什么关系?一般地,抛物线y=ax2与抛物线y=-ax2呢?答:抛物线抛物线y=x2与抛物线y=-x2既关于x轴对称,又关于原点对称。抛物线y=ax2与抛物线y=-ax2也有同样的关系。当a>0时,在对称轴的左侧,y随着x的增大而减小。当a>0时,在对称轴的右侧,y随着x的增大而增大。当a<0时,在对称轴的左侧,y随着x的增大而增大。当a<0时,在对称轴的右侧,y
8、随着x的增大而减小。y=ax2a>0a<0图象开口对称性顶点增减性二次函数y=ax2的性质开口向上开口向下a的绝对值越大,开口越小关于y轴对称顶点坐标是原点(0,0