稍复杂的分数乘除法应用题导学案

稍复杂的分数乘除法应用题导学案

ID:36832811

大小:82.00 KB

页数:3页

时间:2019-05-16

稍复杂的分数乘除法应用题导学案_第1页
稍复杂的分数乘除法应用题导学案_第2页
稍复杂的分数乘除法应用题导学案_第3页
资源描述:

《稍复杂的分数乘除法应用题导学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、编制:徐水清使用人:时间:年月日年级班组名:姓名教学标题较复杂的分数乘除法应用题教学目标1、加强对分数乘除法应用题的训练。2、掌握分数应用题的分析方法,并能够正确的解决稍复杂的分数应用题3、养成认真分析问题的习惯。教学重难点会解较复杂分数应用题授课内容:较复杂的分数应用题,题型广博,变化多端。在教学中,我们应适当地教给学生一些解题方法,以拓宽思路,提高解题能力。一、从确定对应入手找出解题方法分数应用题中有一个“量率对应”的明显特点,对一个单位“1”来说,每个分率都对应着一个具体的数量,而每一个具体的数量,也同样对应着一个分率,因此,正确地确定

2、“量率对应”是解题的关键。我们要引导学生学会和掌握“明确对应,找准对应分率”的解题方法。例:小冬看一本故事书,第一天看了总页数的,第二天看了总页数的,还剩78页没有看,这本故事书共有多少页?把这本故事书的总页数看作单位“1”,要求这本故事书共有多少页,就要求出剩下的78页的对应分率。根据已知条件,第一、二天看了总页数的(+),还剩下78页的对应分率是(1--),求这本故事书共有多少页,就是已知单位“1”的(1-1/6-1/3)是78页,求单位“1”。于是列式为:78÷(1--)=156(页)二、通过统一标准量找出解题方法在一道分数应用题中,如

3、果出现了几个分率,而且这些分率的标准量不同,量的性质相异,在解题时,必须以题中的某一个量为标准量,将其余量的对应分率统一到这个标准量上来,才可列式解答。例:果园里有苹果树和梨树共420棵,苹果树棵数的1/3等于梨树的4/9,问这两种果树各有多少棵?题中的1/3是以苹果树为标准量,4/9是以梨树为标准量,解题时必须统一成一个标准量。若以苹果树为单位“1”,则有1×1/3=梨树×4/9,那么梨树就相当于单位“1”的1/3÷4/9,两种果树的总棵数就相当于单位“1”的(1+1/3÷4/9),于是列式为:420÷(1+1/3÷4/9)=240(棵)…

4、…苹果树240÷(1/3÷4/9)=180(棵)……梨树也可以把梨树看作单位“1”,或把两种果树的总棵数,或者相差棵数看作单位“1”。三、通过假设推算找出解题方法有些分数应用题,如果按题中所给条件直接去思考,就难以找到解题方法,如果在解题时先假设一个主观上所需要的条件,然后按照题目里的数量关系推算,所得的结果则发生与题目条件不同的矛盾,再进行适当的调整,即可找到正确的答案。例:红花村修一条水渠,第一周修了全长的2/5多10米,第二周修了全长的1/4少5米,还剩下282米没有修。这条水渠长多少米?假设第一周修的恰好是全长的2/5,这样第一、二周

5、修后剩下的282米中就要增加10米;假设第二周修的恰好是全长的1/4,这样第一、二周修后剩下的282米中又要减少5米,于是条件变为“第一周修了全长的2/5,第二周修了全长的1/4,还剩下(282+10-5)米没有修。把这条水渠全长看作单位“1”,那么(282+10-5)米的对应分率就是(1-2/5-1/4)。于是列式为:(282+10-5)÷(1-2/5-1/4)=8201(米)四、通过逆推找出解题方法有些分数应用题,如果按从始至终的先后顺序去分析,很难达到解决问题的目的,甚至陷入绝境。不妨“反过来想一想”进行逆推,便容易打开思路,顺利解题。

6、例:有一个油桶里的油,第一次倒出1/3后加入20千克,第二次倒出这时油的1/6多5千克,这时桶里剩下油95千克。问原来桶里有油多少千克?从最后条件出发思考:95+5=100(千克),即为现存油的5/6,故现在桶里有油100÷5/6=120,再从第一个条件思考,120-20=100(千克),即为原存油的2/3,因此,原来桶里有油100÷2/3=150(千克)。综合算式:〔(95+5)÷(1-1/6)-20〕÷(1-1/3)=150(千克)五、借助线段图找出解题方法分数应用题的数量关系比较抽象、隐蔽,如果根据题意画出线段图,可使抽象变具体,隐蔽明

7、朗化,从而借助线段图揭示的数量关系可直观地找出解题方法,甚至有的题还可找到简捷的解法。例:甲乙两人共存人民币若干元,其中甲占3/5,若乙给甲60元后,则乙余下的钱占总数的1/4,甲乙两人各存人民币多少元?根据题意画线段图:附图{图}从线段图上一目了然,60元的对应分率是(1-3/5-1/4),于是可求出甲乙两人共存人民币多少元,进而可求出甲乙两人各存人民币多少元。60÷(1-3/5-1/4)=3200(元)……甲乙两人共存3200×3/5=1920(元)……甲3200×(1-3/5)=1280(元)……乙或3200-1920=1280(元)六

8、、抓住不变量找出解题方法对于标准量不统一的分数应用题,如果我们能从题中找到一个不变量,就以不变量为突破口,便能够很快找到解题方法。例:一个车间有工人360人,其中女

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。