15.1 分式15.1 教学设计3

15.1 分式15.1 教学设计3

ID:36723619

大小:92.00 KB

页数:3页

时间:2019-05-14

15.1 分式15.1 教学设计3_第1页
15.1 分式15.1 教学设计3_第2页
15.1 分式15.1 教学设计3_第3页
资源描述:

《15.1 分式15.1 教学设计3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、分式知识点一:分式的定义一般地,如果A,B表示两个整数,并且B中含有字母,那么式子叫做分式,A为分子,B为分母。知识点二:与分式有关的条件①分式有意义:分母不为0()②分式无意义:分母为0()③分式值为0:分子为0且分母不为0()④分式值为正或大于0:分子分母同号(或)⑤分式值为负或小于0:分子分母异号(或)⑥分式值为1:分子分母值相等(A=B)⑦分式值为-1:分子分母值互为相反数(A+B=0)知识点三:分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。字母表示:,,其中A、B、C是整式,C0。拓展:

2、分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即注意:在应用分式的基本性质时,要注意C0这个限制条件和隐含条件B0。知识点四:分式的约分定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。步骤:把分式分子分母因式分解,然后约去分子与分母的公因。注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。知识点四:最简分式的定义一个分式的分子与分母没有公因

3、式时,叫做最简分式。知识点五:分式的通分①分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。②分式的通分最主要的步骤是最简公分母的确定。最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。确定最简公分母的一般步骤:Ⅰ取各分母系数的最小公倍数;Ⅱ单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式;Ⅲ相同字母(或含有字母的式子)的幂的因式取指数最大的。Ⅳ保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。注意:分式的分母为

4、多项式时,一般应先因式分解。知识点六分式的四则运算与分式的乘方①分式的乘除法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为:分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。式子表示为②分式的乘方:把分子、分母分别乘方。式子③分式的加减法则:同分母分式加减法:分母不变,把分子相加减。式子表示为异分母分式加减法:先通分,化为同分母的分式,然后再加减。式子表示为整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。④分式的加、减、乘、除、乘方的混合运算的

5、运算顺序先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。注意:在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要随便跳步,以便查对有无错误或分析出错的原因。加减后得出的结果一定要化成最简分式(或整式)。知识点六整数指数幂①引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指数幂一样适用。即★★★★()★★()★()(任何不等于零的数的零次幂都等于1)其中m,n均为整数。科学记数法若一个数x是0

6、(,即a的整数部分只有一位,n为整数)的形式,n的确定n=从左边第一个0起到第一个不为0的数为止所有的0的个数的相反数。如0.000000125=7个09个数字若一个数x是x>10的数则可以表示为(,即a的整数部分只有一位,n为整数)的形式,n的确定n=比整数部分的数位的个数少1。如120000000=知识点七分式方程的解的步骤⑴去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)⑵解整式方程,得到整式方程的解。⑶检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根

7、;如果最简公分母不为0,则是原方程的解。产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根。如果一个分式方程的根能使此方程的公分母为零,那么这个根就是原方程的增根。增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的

8、允许值之外的值,那么就会出现增根。分式方程两边都乘以最简公分母化分式方程为整式方程,这时未知数的允许值扩大,因此解分式方程容易发生増根。例如:设方程A(x)=0是由方程B(x)=0变形得来的,如果这两个方程的根完全相同(包括重数),那么称这两个方程等价.如果x=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。