欢迎来到天天文库
浏览记录
ID:36720668
大小:3.79 MB
页数:52页
时间:2019-05-14
《求解浅水波方程的LWDG格式》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、毕业论文题目:求解浅水波方程的LwDG格式计算数学指导教师(姓名、职称):邱建贤教授胡加学摘要我们考虑底部非平坦的浅水波方程,它是双曲守恒律方程组,涉及到海洋潮汐,波浪的浅海滩破碎,洪水和溃坝等问题的模型。本文中,我们构造了平衡的Lax--Wendrof!fH寸间离散的间断Galerkin有限元方法(简称LWDG)。我们可以清楚的看到,经过对流通量的一些修正,传统的LWDG有限元方法仍然可以保持C.性质。同时,我们系统地比较了基于不同数值流通量的LWDG格式,针对具体问题,选择合适的数值流通量。我们首先介绍我们的算法,并证明格
2、式是满足平衡性质的。通过扩展的一维二维的数值模拟来验证我们格式的性质,女II光滑解的高阶性,间断处的非振荡性。然后通过一维例子,诸如CPU消耗,精度,捕捉问断区域,非振荡性等性质来研究不同的数值流通量。.关键词:浅水波方程;间断Galerkin方法;源项;LW时间离散方法;高阶精度;限制器:数值流通量;C.性质THESIS:AApproachofHighOrderWell·-BalancedLax··WendroffDis--continuousGalerkinMethodforShallowWaterEquationSPEC
3、IALIZATION:ComputationalMathematicsPOSTGRADUp汀E:JiaxueHuMENTOR:ProfessorJianxianQiuAbstractInthepaper,weconsidertheshallowwaterequation,withnonflatbottom.Itisahyperbolicsystemofconservationlawsthatapproximatelyinvolvestidesinoceans,breakingofwavesonshallowbeaches,fl
4、oodwavesinriversanddam—breakwavemod-elling.Inthispaper,wepresentadifferentschemestoobtainthesamepurpose:design—inghighorderwell—balancedLax-Wen&offtimediscretizationfortheDGmethod(LWDG).wecanseethatthetraditionalLWDGmethodscanmaintainC—propertyexactly,ifasmallmodifi
5、cationonthefluxisprovided.Thesametime,wesystematicallyinvesti-gatetheperformanceoftheLWDGmethodbasedondifferentnumericalfluxes,includ—inglocalLax-Friedrichs,Harten-Lax-VanLeerflux,etc.,togetthebetterperformancebychoosingsuitablenumericalfluxes.Wefirstdescribethealgo
6、rithms,andproveourschemesatisfiesthewell·-balancedpropertiesandperformextensiveoneandtwodi--mensionalsimulationstotestthepropertiesofourschemesuchashighorderaccuracyinsmoothregions,thenon-oscillatorypropertyforsolutionswithdiscontinuities.Thenstudythedifferentnumeri
7、calfluxesonone—dimensionalsystemcase,includingtheis—suesofcPUcost,accuracy,resolutionofdiscontinuities,non—oscillatoryproperty.Keywords:shallowwaterequation;discontinuousGalerkinmethod;sourceterms;Lax—Wendrofftypetimediscretization;highorderaccuracy;limiter;numerica
8、lflux;C-property㈣弱㈣目录目录⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯··⋯⋯⋯·iii第一章绪论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11.1背景以及意义⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯l1.2课题来源及主要研究内容⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯·2第二章回顾
此文档下载收益归作者所有