椭圆及其标准方程说课稿新人教A版

椭圆及其标准方程说课稿新人教A版

ID:36590324

大小:70.68 KB

页数:3页

时间:2019-05-12

椭圆及其标准方程说课稿新人教A版_第1页
椭圆及其标准方程说课稿新人教A版_第2页
椭圆及其标准方程说课稿新人教A版_第3页
资源描述:

《椭圆及其标准方程说课稿新人教A版》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、《椭圆及其标准方程》说课稿 今天我说课的题目是《椭圆及其标准方程》,内容选自高教版高二数学第八章第12节.下面我从五个方面来说说对这节课的分析和设计: 一、教学背景分析二、教学目标设计三、教法学法设计四、教学过程设计 五、教学评价设计 一、教学背景分析 (一)教材地位分析:《椭圆及其标准方程》是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例,从知识上说,本节课是对坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上说,它为进一步研究双曲线、抛物线提供了基本模式和理论基础,因此本节课起到了承上启下

2、的重要作用. (二)重点、难点分析:本节课的重点是椭圆的定义及其标准方程,标准方程的推导是本节课的难点,要突破这一难点,关键是引导学生正确选择去根式的策略. (三)学情分析:在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识,因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力,但由于学生学习解析几何时间还不长、学习程度也较浅,并且还受到高二这一年龄段学习心理和认知结构的影响,在学习过程中难免会有些困难.如:由于学生对运用坐标法解决几何问题掌握还不够,因

3、此从研究圆到椭圆,学生思维上会存在障碍. 二、教学目标设计 (一)知识目标:掌握椭圆的定义及其标准方程;会根据条件写出椭圆的标准方程;通过对椭圆标准方程的探求,再次熟悉求曲线方程的一般方法. (二)能力目标:学生通过动手画椭圆、分组讨论探究椭圆定义、推导椭圆标准方程等过程,提高动手能力、合作学习能力和运用知识解决实际问题的能力. (三)情感目标:在形成知识、提高能力的过程中,激发学生学习数学的兴趣,提高学生的审美情趣,培养学生勇于探索、敢于创新的精神. 三、教法学法设计 (一)教学方法设计:为了更好地培养学生自主学习能力,提高学生的综合素

4、质,我主要采用探究式教学方法.一方面我通过设置情境、问题诱导充分发挥主导作用;另一方面学生通过对我提供的素材进行直观观察→动手操作→讨论探究→归纳抽象→总结规律的过程充分体现主体地位. 使用多媒体辅助教学与自制教具相结合的设计方案,实现多媒体快捷、形象、大容量的优势与自制教具直观、实用的优势的结合,既突出了知识的产生过程,又增加了课堂的趣味性. (二)学法指导:1.提供观察、思考的机会:用亲切的语言鼓励学生观察并用学生自己的语言进行归纳.2.提供操作、尝试、合作的机会:鼓励学生大胆利用资源,发现问题,讨论问题,解决问题.3.提供表达、交流

5、的机会:鼓励学生敢想敢说,设置问题促使学生愿想愿说.4.提供成功的机会:赞赏学生提出的问题,让学生在课堂中能更多地体验成功的乐趣. 四、教学过程设计 为了更好地突出重点、突破难点,我设计了几个循序渐进的过程.(一)导入阶段:设置情境、问题诱导.(二)学习阶段:探索研究、掌握新知.(三)应用阶段:变式演练、加深理解.(四)小结阶段:反思总结、提高素质.(五)布置作业, (一)设置情境、问题诱导 2005年3“神州六号”载人飞船顺利升空,那么“神州六号”飞船的运行轨道是什么? 学生根据自己平时的积累,可能会回答圆或椭圆。我展示“神州六号”飞船

6、绕地球运行的轨道图片,指出飞船进入太空后,先以椭圆形轨道运行后变轨以圆形轨道运行.由于实际的结果与学生已有的认知产生了冲突,从而激发了学生的兴趣。 然后顺势进行复习提问:圆的定义是什么?圆的标准方程是什么形式?学生回答后,再提出问题诱导学生思考:1、椭圆是怎么画出来的?2、椭圆的定义是什么?3、椭圆的标准方程又是什么形式?从而激起学生强烈的求知欲望. (二)探索研究、掌握新知 我用多媒体演示画椭圆,同时请学生拿出事先准备好的自制教具:木板、细绳、图钉、铅笔,同桌一起合作画椭圆.我在学生的绘图纸上精心设计了三个问题: 1、在作图时,视笔尖为

7、动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何? 2、改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗? 3、绳长能小于两图钉之间的距离吗? 这样,学生边作图、边思考、边讨论,每组学生都可对上述三个问题进行研究比较,我在投影仪上展示学生画出的不同图形,然后参与学生的讨论,引导学生全员参与,积极发言,相互补充,从而探究出三个结论并归纳出椭圆的定义. 接着学生思考两个问题: 1、求曲线方程的一般步骤是什么? 2、圆心在原点的圆的方程与不在原点的方程哪个形式更简单?为什么? 为了突出椭圆标准方程这一重点,再进一步启

8、发:圆心是圆的中心,那么在椭圆中,两焦点连线中点不也是椭圆的中心吗?那么我们如何建系,才能使所得方程更简洁呢?学生在问题诱导下,可能大部分会选择两焦点连线中点为原点,以两焦点所在直线作为x轴建

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。