欢迎来到天天文库
浏览记录
ID:36427489
大小:372.10 KB
页数:37页
时间:2019-05-09
《《AHP决策分析》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、AHP决策分析AHP决策分析的基本原理与计算方法一、基本原理AHP决策分析方法的基本原理,可以用以下的简单事例分析来说明。假设有n个物体A1,A2,…,An,它们的重量分别记为W1,W2,…,Wn。现将每个物体的重量两两进行比较如下:若以矩阵来表示各物体的这种相互重量关系,A=A称为判断矩阵。若取重量向量W=[W1,W2,…,Wn]T,则有:AW=n•WW是判断矩阵A的特征向量,n是A的一个特征值。根据线性代数知识可以证明,n是矩阵A的唯一非零的,也是最大的特征值。上述事实告诉我们,如果有一组物体,需要知道它们的重量,而又没有衡器
2、,那么就可以通过两两比较它们的相互重量,得出每一对物体重量比的判断,从而构成判断矩阵;然后通过求解判断矩阵的最大特征值λmax和它所对应的特征向量,就可以得出这一组物体的相对重量。这一思路提示我们——在复杂的决策问题研究中,对于一些无法度量的因素,只要引入合理的度量标度,通过构造判断矩阵,就可以用这种方法来度量各因素之间的相对重要性,从而为有关决策提供依据。这一思想,实际上就是AHP决策分析方法的基本思想,AHP决策分析方法的基本原理也由此而来。二、AHP决策分析方法的基本过程AHP决策分析方法的基本过程,大体可以分为如下六个基本
3、步骤:(一)明确问题。即弄清问题的范围,所包含的因素,各因素之间的关系等,以便尽量掌握充分的信息。(二)建立层次结构模型。(三)构造判断矩阵。(四)层次单排序。(五)层次总排序。(六)一致性检验。转到第三部分在这一个步骤中,要求将问题所含的要素进行分组,把每一组作为一个层次,并将它们按照:最高层(目标层)——若干中间层(准则层)——最低层(措施层)的次序排列起来。这种层次结构模型常用结构图来表示(图8.1.1),图中要标明上下层元素之间的关系。(二)建立层次结构模型。AHP决策分析法层次结构示意图如果某一个元素与下一层的所有元素均
4、有联系,则称这个元素与下一层次存在有完全层次的关系。如果某一个元素只与下一层的部分元素有联系,则称这个元素与下一层次存在有不完全层次的关系。层次之间可以建立子层次,子层次从属于主层次中的某一个元素,它的元素与下一层的元素有联系,但不形成独立层次。返回(三)构造判断矩阵。①判断矩阵表示针对上一层次中的某元素而言,评定该层次中各有关元素相对重要性程度的判断。其形式如下:这一个步骤是AHP决策分析中一个关键的步骤。②其中,bij表示对于Ak而言,元素Bi对Bj的相对重要性程度的判断值。一般取1,3,5,7,9等5个等级标度,其意义为:1
5、表示Bi与Bj同等重要;3表示Bi较Bj重要一点;5表示Bi较Bj重要得多;7表示Bi较Bj更重要;9表示Bi较Bj极端重要。而2,4,6,8表示相邻判断的中值,当5个等级不够用时,可以使用这几个数。③显然,对于任何判断矩阵都应满足(i,j=1,2,…,n)④一般而言,判断矩阵的数值是根据数据资料、专家意见和分析者的认识,加以平衡后给出的。⑤如果判断矩阵存在关系:bij=(i,j,k=1,2,3,…,n)则称它具有完全一致性。为了考察AHP决策分析方法得出的结果是否基本合理,需要对判断矩阵进行一致性检验。返回四、层次单排序。①目的
6、:确定本层次与上层次中的某元素有联系的各元素重要性次序的权重值。②任务:计算判断矩阵的特征根和特征向量。即对于判断矩阵B,计算满足:的特征根和特征向量。式中,λmax为判断矩阵B的最大特征根,W为对应于λmax的正规化特征向量,W的分量Wi就是对应元素单排序的权重值。通过前面的分析,我们知道,如果判断矩阵B具有完全一致性时,λmax=n。但是,在一般情况下是不可能的。为了检验判断矩阵的一致性,需要计算它的一致性指标:③检验判断矩阵的一致性:在(8.1.6)式中,当CI=0时,判断矩阵具有完全一致性;反之,CI愈大,就表示判断矩阵的
7、一致性就越差。为了检验判断矩阵是否具有令人满意的一致性,需要将CI与平均随机一致性指标RI(见表.1)进行比较。一般而言,1或2阶的判断矩阵总是具有完全一致性的。对于2阶以上的判断矩阵,其一致性指标CI与同阶的平均随机一致性指标RI之比,称为判断矩阵的随机一致性比例,记为CR。一般地,当(7)时,就认为判断矩阵具有令人满意的一致性;否则,当CR0.1时,就需要调整判断矩阵,直到满意为止。表平均随机一致性指标返回五、层次总排序。①定义:利用同一层次中所有层次单排序的结果,就可以计算针对上一层次而言,本层次所有元素的重要性权重值,这就
8、称为层次总排序。②层次总排序需要从上到下逐层顺序进行。对于最高层而言,其层次单排序的结果也就是总排序的结果。假如上一层的层次总排序已经完成,元素A1,A2,…,Am得到的权重值分别为a1,a2,…,am;与Aj对应的本层次元素B1,B2,…,Bn的
此文档下载收益归作者所有