《2.2.3 独立重复试验与二项分布》导学案3

《2.2.3 独立重复试验与二项分布》导学案3

ID:36156952

大小:103.50 KB

页数:3页

时间:2019-05-06

《2.2.3 独立重复试验与二项分布》导学案3_第1页
《2.2.3 独立重复试验与二项分布》导学案3_第2页
《2.2.3 独立重复试验与二项分布》导学案3_第3页
资源描述:

《《2.2.3 独立重复试验与二项分布》导学案3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《2.2.3独立重复试验与二项分布》导学案3学习目标:1,理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。2,能进行一些与n次独立重复试验的模型及二项分布有关的概率学习重点:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题学习难点:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算学习过程:一.课前预习:内化知识 夯实基础1,n次独立重复试验在————————————条件下—————————————的n次试验称为n次独立重复试验。2,独立重复试验概型有什么特点?⑴

2、在同样条件下重复地进行的一种试验;⑵各次试验之间相互独立,互相之间没有影响;⑶每一次试验只有两种结果,即某事要么发生,要么不发生,并且任意一次试验中发生的概率都是一样的。3,应用二项分布解决实际问题的步骤:(1)判断问题是否为独立重复试验;(2)在不同的实际问题中找出概率模型中的n、k、p;(3)运用公式求概率。4,设诸葛亮解出题目的概率是0.9,三个臭皮匠各自独立解出的概率都是0.6,皮匠中至少一人解出题目即胜出比赛,诸葛亮和臭皮匠团队哪个胜出的可能性大?解:设皮匠中解出题目的人数为X,则X的分布列:解出

3、的人数x0123概率P    至少一人解出的概率为:解1:(直接法)P(x≥1)=P(x=1)+P(x=2)+P(x=3)=0.936.解2:(间接法)P(x≥1)=1-P(x=0)=1-0.43=0.936因为0.936﹥0.9,所以臭皮匠团队胜出的可能性大三.课堂互动:积极参与 领悟技巧例1.某射手每次射击击中目标的概率是0.8.求这名射手在10次射击中,(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率.(结果保留两个有效数字.)例2.重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ>

4、3).例3.某气象站天气预报的准确率为,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率例4.某车间的5台机床在1小时内需要工人照管的概率都是,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)课堂练习:1.每次试验的成功率为,重复进行10次试验,其中前7次都未成功后3次都成功的概率为()2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为()3.某人有5把钥匙,其中有两把房门钥匙,但忘记了

5、开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是()4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为()5.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为.(设每次命中的环数都是自然数)6,种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:⑴全部成活的概率;⑵全部死亡的概率;⑶恰好成活3棵的概率;⑷至少成活4棵的概率小结:1.独立重复试验要从三方面考虑第一:每次试

6、验是在同样条件下进行第二:各次试验中的事件是相互独立的第三,每次试验都只有两种结果,即事件要么发生,要么不发生2.如果1次试验中某事件发生的概率是,那么次独立重复试验中这个事件恰好发生次的概率为对于此式可以这么理解:由于1次试验中事件要么发生,要么不发生,所以在次独立重复试验中恰好发生次,则在另外的次中没有发生,即发生,由,所以上面的公式恰为展开式中的第项,可见排列组合、二项式定理及概率间存在着密切的联系六、课后作业:课本58页练习1、2、3、4第60页习题2.2B组2、3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。