2019届高考数学复习第七章不等式推理与证明考点规范练32二元一次不等式(组)与简单的线性规划问题文新人教a版

2019届高考数学复习第七章不等式推理与证明考点规范练32二元一次不等式(组)与简单的线性规划问题文新人教a版

ID:36153482

大小:326.29 KB

页数:6页

时间:2019-05-06

2019届高考数学复习第七章不等式推理与证明考点规范练32二元一次不等式(组)与简单的线性规划问题文新人教a版_第1页
2019届高考数学复习第七章不等式推理与证明考点规范练32二元一次不等式(组)与简单的线性规划问题文新人教a版_第2页
2019届高考数学复习第七章不等式推理与证明考点规范练32二元一次不等式(组)与简单的线性规划问题文新人教a版_第3页
2019届高考数学复习第七章不等式推理与证明考点规范练32二元一次不等式(组)与简单的线性规划问题文新人教a版_第4页
2019届高考数学复习第七章不等式推理与证明考点规范练32二元一次不等式(组)与简单的线性规划问题文新人教a版_第5页
资源描述:

《2019届高考数学复习第七章不等式推理与证明考点规范练32二元一次不等式(组)与简单的线性规划问题文新人教a版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、考点规范练32 二元一次不等式(组)与简单的线性规划问题基础巩固1.若点(1,b)在两条平行直线6x-8y+1=0和3x-4y+5=0之间,则b应取的整数值为(  )                A.2B.1C.3D.02.(2017全国Ⅲ,文5)设x,y满足约束条件则z=x-y的取值范围是(  )A.[-3,0]B.[-3,2]C.[0,2]D.[0,3]3.(2017山东,文3)已知x,y满足约束条件则z=x+2y的最大值是(  )A.-3B.-1C.1D.34.给出平面区域如图所示,其中A(5,3),B

2、(1,1),C(1,5),若使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a的值是(  )A.         B.C.2          D.5.(2017福建泉州一模)已知实数x,y满足则z=ax+y(a>0)的最小值为(  )A.0B.aC.2a+1D.-16.已知实数x,y满足约束条件则x2+y2+2x的最小值是(  )A.B.-1C.D.17.已知实数x,y满足条件若目标函数z=3x+y的最小值为5,则其最大值为     . 8.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原

3、料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨、B原料不超过18吨,则该企业可获得的最大利润是     万元. 9.已知实数x,y满足则x2+y2的取值范围是     . 能力提升10.已知x,y满足约束条件若z=y-ax取得最大值的最优解不唯一,则实数a的值为(  )A.或-1B.2或C.2或1D.2或-111.若不等式组表示的平面区域为三角形,且其面积等于,则m的值为(  )A.-3B.1

4、C.D.312.某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的质量(单位:吨)如下表所示:  原料肥料  ABC甲483乙5510现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y表示计划生产甲、乙两种肥料的车皮数量.(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料各

5、多少车皮,能够产生最大的利润?并求出此最大利润.高考预测13.在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则

6、OM

7、的最小值是     . 答案:1.B 解析:由题意知(6-8b+1)(3-4b+5)<0,即(b-2)<0,解得

8、y变形为y=-x+z,作直线l0:y=-x并向上平移,当直线过点A时,z取最大值,易求点A的坐标为(-1,2),所以zmax=-1+2×2=3.4.B 解析:直线y=-ax+z(a>0)的斜率为-a<0,当直线y=-ax平移到直线AC位置时取得最大值的最优解有无穷多个.∵kAC=-,∴-a=-,即a=.5.D 解析:由约束条件作出可行域如图.化目标函数z=ax+y(a>0)为y=-ax+z,由图可知,当直线y=-ax+z过点A(0,-1)时,直线在y轴上的截距最小,z有最小值为-1.6.D 解析:约束条件所表示

9、的平面区域如图中阴影部分所示.x2+y2+2x=(x+1)2+y2-1表示点(-1,0)到可行域内任一点距离的平方再减1,由图可知当x=0,y=1时,x2+y2+2x取得最小值1.7.10 解析:画出x,y满足的可行域如下图,可得直线x=2与直线-2x+y+c=0的交点A,使目标函数z=3x+y取得最小值5,故由解得x=2,y=4-c,代入3x+y=5得6+4-c=5,即c=5.由得B(3,1).当过点B(3,1)时,目标函数z=3x+y取得最大值,最大值为10.8.27 解析:设生产甲产品x吨、乙产品y吨,则

10、获得的利润为z=5x+3y.由题意得此不等式组表示的平面区域如图阴影部分所示.由图可知当y=-x+经过点A时,z取得最大值,此时x=3,y=4,zmax=5×3+3×4=27(万元).9. 解析:画出约束条件对应的可行域(如图中阴影部分所示),x2+y2表示原点到可行域中的点的距离的平方,由图知原点到直线2x+y-2=0的距离的平方为x2+y2的最小值,为,原点到点(2,3)的距离的平

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。