欢迎来到天天文库
浏览记录
ID:36126580
大小:140.50 KB
页数:18页
时间:2019-05-06
《反比例函数课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、反比例函数授课人:王翠花二O一六年九年学习目标1.理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别反比例函数.2.能根据已知条件确定反比例函数的表达式.学习重点1.理解反比例函数的意义.2.确定反比例函数的表达式学习难点1.反比例函数表达式的确定.2.根据已知条件确定反比例函数的表达式.教学过程一、自主探究:1.什么是函数?2.什么是一次函数?什么是正比例函数?它们的一般形式是怎样的?3.我们还记得,在小学里学过,什么叫成反比例关系吗?4.如果路程s一定,那么速度v和时间t成什么关系?教学过程二、自主合作:1.尝试:汽车从南京出发开往上海(全程约300km),全程所用
2、时间t(h),随速度v(km/的变化而变化.(1)你能用含v的代数式表示t吗?(2)利用(1)的关系式完成下表:随着速度的变化,全程所用时间发生怎样的变化?(3)时间t是速度v的函数吗?为什么?(4)时间t是速度v的一次函数吗?是正比例函数吗?为什么?v/(km/h)608090100120t/h教学过程2.思考:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;(3)游泳池的容积为5000m3,向池内注
3、水,注满水所需时间t(h)随注水速度v(m3/h)的变化而变化;(4)实数m与n的积为-200,m随n的变化而变化.教学过程3.讨论交流.函数关系式具有什么共同特征?你还能举出类似的实例吗?教学过程4.概括总结.一般地,形如(k为常数,k≠0)的函数叫做反比例函数.其中x是自变量,y是x的函数,k是比例系数.5.概念巩固:下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?反比例函数通常有三种表达式:y=,y=kx-1,xy=k(上述三个式子中k均为常数且k≠0).三、自主展示:例1:判断下列函数表达式中,表示反比例函数的是哪几个?例2(1)已知y是x的反比例函数,当x=3时,y
4、=2,求y与x的函数关系式.(2)y=(1+k)x︱k︱-2中,y是x的反比例函数,求k的值.教学过程四、自主拓展:1.下列关系式中,是反比例函数的是()2.下列各选项中所列举的两个变量之间的关系,是反比例函数关系的是()A.斜边长为5的直角三角形中,两直角边之间的关系.B.等腰三角形中,顶角与底角之间的关系.C.圆的面积s与它的直径d之间的关系.D.面积20cm2的菱形,其中一条对角线长y与另一条对角线长x的关系.3.已知y与x成反比例函数的关系,且当x=-2时,y=3,(1)求该函数的解析式(2)当x=4时,求y的值(3)当y=2时,求x的值.归纳总结:反比例函数的五种不同的表现形式:
5、形式1:y是x反比例函数形式2:y=(k为常数,k≠0)形式3:y=kx-1(k为常数,k≠0)形式4:xy=k(k为常数,k≠0)形式5:变量y与x成反比例,比例系数为k(k≠0)课后作业1.函数y=(k)叫做反比例函数,确定了就可以确定一个反比例函数,自变量的取值范围是.2.反比例函数y=中的k值为.3.当m时,y=是反比例函数,任取一个m值写出这个反比例函数4.近视眼镜的度数y度与镜片焦距x米成反比例,已知400度近视眼镜片的焦距为0.25米,则眼镜度数y度与镜片焦距x之间的函数关系式是.课后作业5.下列各题中:(1)三角形的面积S一定时,它的底a与这个底边上的高h的关系;(2)多边
6、形的内角和与边数的关系;(3)正三角形的面积与边长之间的关系;是反比例函数关系的是:(只填序号)6.y与x成反比例,x与z成正比例,则y与z成比例.7.下列函数中是反比例函数的是()课后作业8.甲地与乙地相距5千米,某人以平均速度v(km/h)从甲地向乙地行走,设他全程所需时间为t(h),则变量t是v的()A.正比例函数B.反比例函数C.一次函数D.以上都不对9.计划修建铁路s(km),铺轨天数a(天),每日铺轨长度b(km/天),则下列三个结论正确的是()①当s一定时,a是b的反比例函数;②当a一定时,s是b的反比例函数;③当b一定时,a是s的反比例函数;A.①B.②C.③D.①②③10
7、.已知y与x+2成反比例,且当x=2时,y=3,求(1)y关于x的函数解析式;(2)当x=-2时的y值.课后作业11.已知函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=6,当x=2时,y=5,求y与x的函数关系式.教学反思通过复习一次函数的变量关系,引导学生分析两变量之间成反比例函数的形式的两种情况,即,以及根据图象,说明函数的增减性。通过具体实例,要求学生会解答生活中的实际问题,以达到复习巩
此文档下载收益归作者所有