小学奥数经典专题点拨:其他定理.doc

小学奥数经典专题点拨:其他定理.doc

ID:35975963

大小:133.50 KB

页数:3页

时间:2019-04-29

小学奥数经典专题点拨:其他定理.doc_第1页
小学奥数经典专题点拨:其他定理.doc_第2页
小学奥数经典专题点拨:其他定理.doc_第3页
资源描述:

《小学奥数经典专题点拨:其他定理.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、其他定理或性质  【算术基本定理】任意一个大于1的整数,都能表示成若干个质数的乘积,如果不计质因数的顺序,则这个分解式是唯一的。即任意一个大于1的整数  a=[p1×p2×p3×……×pn(p1≤p2≤p3≤……≤pn)其中p1、p2、p3、…、np都质数;并且若  a=q1×q2×q3×…qm(q1≤q2≤q3≤…≤qm)  其中q1、q2、q3、…、qm都是质数。那么,m=n,qi=pi(i=1,2,3,…,n)  当这个整数是质数时是符合定理的特例。  上述定理,叫做“算术基本定理”。  【方程同解变形定理】方程的同解变形,有下列两个基本定理:  定理一方程两边同时加上(或同时减去)同一

2、个数或整式,所得的方程与原方程同解。  根据这一同解定理,可把方程中某一项改变符号后,从方程的一边移到另一边。这种变形叫做移项。  例如,解方程3x=2x+5。  解移项,得  3x-2x=5  合并同类项,得  x=5。  定理二方程两边同时乘以(或除以)同一个不是零的数,所得的方程与原方程同解。  是同解的。  【一笔画的性质】为掌握“一笔画”的性质,先介绍“一笔画”的有关概念。  图──用若干条线(不一定是直线段)把一些点连接起来的图形,如图1.7。这些点叫图的顶点,如A、B、C、D;这些线叫图的边,如AB、AC、AD等。  点的次--每个点上所连接的线的条数,叫做这个点的“次”。如图1

3、.7中,A点有五条线与它相连,B点有三条线与它相连,则A点的次为5;B点有三条线与它相连,则B点的次为3。  奇点--点的次数为奇数,则这个点为“奇点”。如图1.7中的A、B、C、D点,全部都是奇点。  偶点--点的次数为偶数,则这个点叫做“偶点”。  如图1.8中的B点(4次)、D点(2次),都是偶点。一笔画问题--在图1.8中,能否从A点(或其他点)出发,不重复任一边(点可随便经过若干次)而一笔画出全图的问题,叫做“一笔画问题”(也称“七桥问题”,见本书第九部分“七桥问题”词条)。  能一笔画的图形,具有下面两条性质:  (1)若一个图形中,奇点的个数不大于2,则这个图形必能一笔画成,否则

4、就不能画成。  例如图1.7中,奇点有A、B、C、D四个,它无论从哪一点出发,都是不可能一笔画成的。而图1.8中,奇点只有A、C两个,它是可以一笔画成的。其画法可如图1.9所示:从A点出发,经1到C,经2到D,经3到B,经4到A,又经5到B,再经6到A,然后经7到C,完成全图。显然,此图的画法并不止于这一种,这只是多种画法中的一种画法。  (2)若一个图中没有奇点,那么始点和终点必须重合;若一个图中有两个奇点,则这两个奇点必是起点和终点。  例如图1.10中,点A、B、C均为偶点,没有奇点。若从A点出发,按图外箭头所指的方向,经①、②、③、④、⑤,便又回到了A点。这样,A点便既是始点又是终点。

5、而图1.8中有A、C两个奇点,按性质(1)中的画法,可从A点出发,到C点结束,A是始点,C是终点。图1.9(也可以从C点出发,到A点结束,C为始点,A为终点。)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。