资源描述:
《小四数学第13讲:数字谜题(教师版)-国展秦晓艳.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第十三讲数字谜题------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------横式数字谜题横式数字谜问题是指算式是横式形式,并且只给出了部分运
2、算符号和数字,有一些数字或运算符号“残缺”,要我们根据运算法则进行判断、推理,从而把“残缺”的算式补充完整。解决此类问题时:第一步,要仔细审题;第二步,要选择突破口;第三步,试验求解。就是要求我们能够灵活地运用运算法则和整数的性质,仔细观察算式的特点,学会发现问题、分析问题。从这个意义上讲,研究和解决此类问题,有利于培养我们观察、分析、归纳、推理能力。竖式数字谜题竖式数字谜是一种猜数的游戏。解竖式数字型,就得根据有关的运算法则、数的性质(和差积商的为数,数的乘除性、奇偶性、尾数规律等)来进行正确地推理、判断。解答竖式数字谜时应注意以下几点:(1)空格中只能填写0,1,2,3,4,5,6,7
3、,8,9,而且最高位不能为0;(2)进位要留意,不能漏掉了;(3)答案有时不唯一;(4)两数字相加,最大进位为1,三个数字相加最大进位为2;(5)两个数字相乘,最大进位为8;(6)相同的字母(汉字或符号)代表相同的数字,不同的字母(汉字或符号)代表不同的数字。1:正确推断横式数字谜题。2:正确推断竖式数字谜题:3:培养学生观察、分析、归纳、推理能力。例1在下面算式等号左边合适的地方添上括号,使等式成立: 5+7×8+12÷4-2=20。 分析:等式右边是20,而等式左边算式中的7×8所得的积比20大得多。因此必须设法使这个积缩小一定的倍数,化大为小。 从整个算式来看,7×8是4的倍数
4、,12也是4的倍数,5不能被4整除,因此可在7×8+12前后添上小括号,再除以4得17,5+17-2=20。答案:5+(7×8+12)÷4-2=20。例2把1~9这九个数字填到下面的九个□里,组成三个等式(每个数字只能填一次):分析与解:如果从加法与减法两个算式入手,那么会出现许多种情形。如果从乘法算式入手,那么只有下面两种可能: 2×3=6或2×4=8, 所以应当从乘法算式入手。 因为在加法算式□+□=□中,等号两边的数相等,所以加法算式中的三个□内的三个数的和是偶数;而减法算式□-□=可以变形为加法算式□=□+□,所以减法算式中的三个□内的三个数的和也是偶数。于是可知,原题加减法
5、算式中的六个数的和应该是偶数。 若乘法算式是2×4=8,则剩下的六个数1,3,5,6,7,9的和是奇数,不合题意; 若乘法算式是2×3=6,则剩下的六个数1,4,5,7,8,9可分为两组: 4+5=9,8-7=1(或8-1=7); 1+7=8,9-5=4(或9-4=5)。 所以答案为 对题目经过初步分析后,将满足题目条件的所有可能情况全部列举出来,再逐一试算,决定取舍。这种方法叫做枚举法,也叫穷举法或列举法,它适用于只有几种可能情况的题目,如果可能的情况很多,那么就不宜用枚举法。例3下面的算式是由1~9九个数字组成的,其中“7”已填好,请将其余各数填入□,使得等式成立: □
6、□□÷□□=□-□=□-7。分析与解:因为左端除法式子的商必大于等于2,所以右端被减数只能填9,由此知左端被除数的百位数只能填1,故中间减式有8-6,6-4,5-3和4-2四种可能。经逐一验证,8-6,6-4和4-2均无解,只有当中间减式为5-3时有如下两组解:答案:128÷64=5-3=9-7, 或164÷82=5-3=9-7。例4.数数×科学=学数学在上面的算式中,每一汉字代表一个数字,不同的汉字代表不同的数字.那么“数学”所代表的两位数是多少?【分析与解】“学数学”是“数数”的倍数,因而是“数”与1l的倍数.学数学=学×101+数×10是“数”的倍数,而101是质数,所以“学”一定是
7、“数”的倍数.又“学数学”是11的倍数,因而:“学+学-数”为11的倍数.因为“学”是“数”的倍数,从上式推出“数”是11的约数,所以“数”=1,“学”=(11+1)÷2=6.答案:“数学”所代表的两位数是16.例5.图19-3是三位数与一位数相乘的算式,在每个方格填入一个数字,使算式成立.那么共有多少种不同的填法?【分析与解】设1992=×d(a,b,c,d可以相同),有1992=2×2×2×3×83,其中d可以取2,