2018年高中数学课时分层作业12等差数列前n项和的综合应用新人教a版

2018年高中数学课时分层作业12等差数列前n项和的综合应用新人教a版

ID:35736063

大小:49.03 KB

页数:5页

时间:2019-04-15

2018年高中数学课时分层作业12等差数列前n项和的综合应用新人教a版_第1页
2018年高中数学课时分层作业12等差数列前n项和的综合应用新人教a版_第2页
2018年高中数学课时分层作业12等差数列前n项和的综合应用新人教a版_第3页
2018年高中数学课时分层作业12等差数列前n项和的综合应用新人教a版_第4页
2018年高中数学课时分层作业12等差数列前n项和的综合应用新人教a版_第5页
资源描述:

《2018年高中数学课时分层作业12等差数列前n项和的综合应用新人教a版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课时分层作业(十二) 等差数列前n项和的综合应用(建议用时:40分钟)[学业达标练]一、选择题1.数列{an}为等差数列,它的前n项和为Sn,若Sn=(n+1)2+λ,则λ的值是(  )A.-2       B.-1C.0D.1B [等差数列前n项和Sn的形式为Sn=an2+bn,∴λ=-1.]2.已知等差数列{an}的前n项和为Sn,若=a1+a200,且A,B,C三点共线(该直线不过点O),则S200等于(  )【导学号:91432182】A.100B.101C.200D.201A [A、B、C三点共线⇔a1+a200=1,∴S200=(a1+a200)=100.]

2、3.若数列{an}的前n项和是Sn=n2-4n+2,则

3、a1

4、+

5、a2

6、+…+

7、a10

8、等于(  )A.15B.35C.66D.100C [易得an=

9、a1

10、=1,

11、a2

12、=1,

13、a3

14、=1,令an>0则2n-5>0,∴n≥3.∴

15、a1

16、+

17、a2

18、+…+

19、a10

20、=1+1+a3+…+a10=2+(S10-S2)=2+[(102-4×10+2)-(22-4×2+2)]=66.]4.设数列{an}是等差数列,若a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n项和,则使Sn达到最大值的n是(  )【导学号:91432183】A.18B.19C.20D

21、.21C [a1+a3+a5=105=3a3,∴a3=35,a2+a4+a6=99=3a4,∴a4=33,∴d==-2,∴an=a3+(n-3)d=41-2n,令an>0,∴41-2n>0,∴n<,∴n≤20.]5.++++…+等于(  )A.B.C.D.C [通项an==,∴原式===.]二、填空题6.已知等差数列{an}中,Sn为其前n项和,已知S3=9,a4+a5+a6=7,则S9-S6=________.【导学号:91432184】5 [∵S3,S6-S3,S9-S6成等差数列,而S3=9,S6-S3=a4+a5+a6=7,∴S9-S6=5.]7.已知数列{an

22、}的前n项和Sn=n2-9n,第k项满足50,∴a1>a2>a3>a4>a5>a6=0,a7<0.故当n=5或6时,Sn最大.]三、解答题9.已知等差数列{an}中,a1=9,a4+a7=0.(1)求数列{an}的通项公式;(2

23、)当n为何值时,数列{an}的前n项和取得最大值?[解] (1)由a1=9,a4+a7=0,得a1+3d+a1+6d=0,解得d=-2,∴an=a1+(n-1)·d=11-2n.(2)法一:a1=9,d=-2,Sn=9n+·(-2)=-n2+10n=-(n-5)2+25,∴当n=5时,Sn取得最大值.法二:由(1)知a1=9,d=-2<0,∴{an}是递减数列.令an≥0,则11-2n≥0,解得n≤.∵n∈N*,∴n≤5时,an>0,n≥6时,an<0.∴当n=5时,Sn取得最大值.10.若等差数列{an}的首项a1=13,d=-4,记Tn=

24、a1

25、+

26、a2

27、+…+

28、a

29、n

30、,求Tn.【导学号:91432186】[解] ∵a1=13,d=-4,∴an=17-4n.当n≤4时,Tn=

31、a1

32、+

33、a2

34、+…+

35、an

36、=a1+a2+…+an=na1+d=13n+×(-4)=15n-2n2;当n≥5时,Tn=

37、a1

38、+

39、a2

40、+…+

41、an

42、=(a1+a2+a3+a4)-(a5+a6+…+an)=S4-(Sn-S4)=2S4-Sn=2×-(15n-2n2)=2n2-15n+56.∴Tn=[冲A挑战练]1.已知等差数列{an}的前n项和为Sn,S4=40,Sn=210,Sn-4=130,则n=(  )A.12B.14C.16D.18B [Sn-Sn

43、-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn==210,得n=14.]2.设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m等于(  )【导学号:91432187】A.3B.4C.5D.6C [am=Sm-Sm-1=2,am+1=Sm+1-Sm=3,所以公差d=am+1-am=1,由Sm==0,得a1=-2,所以am=-2+(m-1)·1=2,解得m=5,故选C.]3.已知数列:1,,,…,,…,则其前n项和等于__

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。