2、AB=AD=DC,∠B=70°,则∠C的度数为( A )A.35° B.40° C.45° D.50°(图1) (图2)仿例2:如图2,已知∠AOB=60°,点P在边OA上,OP=12,点M、N在边OB上,PM=PN,若MN=2,则OM=5.仿例3:如图,等边△ABC中,AE=CD,AD、BE相交于P,BQ⊥AD于Q.求证:BP=2PQ.证明:∵AB=AC,∠BAE=∠ACD=60°,AE=CD,∴△ABE≌△CAD,∴∠ABE=∠CAD,∵∠BAC=∠BAP+∠CAD=60°,∴∠BAP+∠ABE=60°,∴∠BPQ=60°,∵BQ⊥AD,∠P
3、BQ=30°,∴BP=2PQ.学习笔记:行为提示:教师结合各组反馈的疑难问题分配展示任务,各组在展示过程中,老师引导其他组进行补充,纠错,最后进行总结评分.学习笔记:检测可当堂完成.范例2:Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( A )A.8 B.4 C.6 D.无法计算仿例1:如图,已知∠C=∠FBD=90°,FD⊥AB,垂足为点O,若使△ACB≌△DBF,还需添加的条件是答案不唯一,如AB=DF或AC=DB或CB=BF.仿例2:使两个直角三角形全等的条件是( D )A.一个锐角对应相等 B.两个锐角对应相等C.一条边对应相
4、等D.两条边对应相等范例3:在△ABC中,AB的垂直平分线与AC边所在直线相交所得的锐角为50°,则∠A的度数为( C )A.50° B.40° C.40°或140° D.40°或50°仿例1:如图,D是线段AB、BC垂直平分线的交点,若∠ABC=150°,则∠ADC的大小是( A )A.60°B.70°C.75°D.80°,(仿例1题图)) ,(仿例2题图)) ,(仿例3题图))仿例2:如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为6.仿例3:如图,在△ABC中,∠
5、ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是( B )A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°交流展示 生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一 等腰三角形与等边三角形知识模块二 直角三角