欢迎来到天天文库
浏览记录
ID:34788354
大小:1018.00 KB
页数:18页
时间:2019-03-10
《概率论与数理统计附标准答案四》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第四章大数定律与中心极限定理4.1设为退化分布:讨论下列分布函数列的极限是否仍是分布函数?解:(1)(2)不是;(3)是。4.2设分布函数如下定义:问是分布函数吗?解:不是。4.3设分布函数列弱收敛于分布函数,且为连续函数,则在上一致收敛于。证:对任意的,取充分大,使有对上述取定的,因为在上一致连续,故可取它的分点:,使有,再令,则有(1)这时存在,使得当时有18/18(2)成立,对任意的,必存在某个,使得,由(2)知当时有(3)(4)由(1),(3),(4)可得,,即有成立,结论得证。4.5设随机变量序列同时依概率收敛于随机变量与,证明这时必
2、有。证:对任意的有,故即对任意的有成立,于是有从而成立,结论得证。4.6设随机变量序列,分别依概率收敛于随机变量与,证明:(1);(2)。证:(1)因为18/18故即成立。(2)先证明这时必有。对任给的取足够大,使有成立,对取定的,存在,当时有成立这时有从而有由的任意性知,同理可证,由前述(1)有故,结论成立。4.7设随机变量序列,是一个常数,且,证明。18/18证:不妨设对任意的,当时有,因而。于是有。结论成立。4.9证明随机变量序列依概率收敛于随机变量的充要条件为:证:充分性,令,,则,故是的单调上升函数,因而,于是有对任意的成立,充分性得
3、证。必要性,对任给的,令,因为,故存在充分大的使得当时有,于是有18/18,由的任意性知,结论为真。4.10设随机变量按分布收敛于随机变量,又数列,,证明也按分布收敛于。证:先证明按分布收敛于。时为显然,不妨设(时的修改为显然),若,,,的分布函数分别记作,,与,则=,当是的连续点时,是的连续点,于是有矚慫润厲钐瘗睞枥庑赖。成立,结论为真。由4.12知,再由4.6(1)知,于是由前述结论及4.11知按分布收敛于,结论得证。4.11设随机变量序列按分布收敛于随机变量,随机变量序列依概率收敛于常数,证明按分布收敛于。证:记的分布函数分别为,则的分布
4、函数为,设是的连续点,则对任给的,存在,使当时有(1)18/18现任取,使得都是的连续点,这时存在,当时有(2)(3)对取定的,存在,当时有(4)于是当时,由(1),(2),(4)式有又因为于是由(1),(3),(4)式有(6)由(5),(6)两式可得由的任意性即知按分布收敛于,结论得证。4.12设随机变量序列按分布收敛于,随机变量序列依概率收敛于,证明.证:记的分布函数分别为,对任给的,取足够大,使是的连续点且18/18因为,故存在,当时有令,因为,故存在,当时有而其中,当时有因而,由的任意性知,结论为真。4.13设随机变量服从柯西分布,其密
5、度函数为证明。证:对任意的,有故。4.14设为一列独立同分布随机变量,其密度函数为18/18其中为常数,令,证明。证:对任意的,为显然,这时有对任意的,有故成立,结论得证。4.15设为一列独立同分布随机变量,其密度函数为令,证明。证:设的分布函数为,有这时有对任意的,有故成立,结论得证。4.17设为一列独立同分布随机变量,都服从上的均匀分布,若,证明。18/18证:这时也是独立同分布随机变量序列,且由辛钦大数定律知服从大数定理,即有,令,则是直线上的连续函数,由4.8题知结论成立。4.18设为一列独立同分布随机变量,每个随机变量的期望为,且方差
6、存在,证明。证:已知,记,令,则对任给的,由契贝晓夫不等式有故,结论得证。4.19设为一列独立同分布随机变量,且存在,数学期望为零,证明。证:这时仍独立同分布,且,由辛钦大数定律知结论成立。4.21设随机变量序列按分布收敛于随机变量,又随机变量序列18/18依概率收敛于常数,则按分布收敛于。证:由4.7题知,于是由4.12题有,而按分布收敛于(见4.10题的证明),因而由4.11题知按分布收敛于,结论成立。4.22设为独立同分布的随机变量序列,证明的分布函数弱收敛于分布。证:这时也为独立同分布随机变量序列,且,由辛钦大数定律知,又服从分布,当然
7、弱收敛于分布,由4.21题即知按分布收敛于分布,结论得证。聞創沟燴鐺險爱氇谴净。4.23如果随机变量序列,当时有,证明服从大数定律(马尔柯夫大数定律)证:由契贝晓夫不等式即得。4.26在贝努里试验中,事件出现的概率为,令证明服从大数定律。证:为同分布随机变量序列,且,因而,又当时,与独立,由4.24知18/18服从大数定律,结论得证。4.28设为一列独立同分布随机变量,方差存在,又为绝对收敛级数,令,则服从大数定律。证:不妨设。否则令,并讨论即可。记,又。因为,故有由4.23知服从大数定律,结论得证。4.30设为一列独立同分布随机变量,共同分布
8、为试问是否服从大数定律?答:因为存在,由辛钦大数定律知服从大数定律。4.31设为一列独立同分布随机变量,共同分布为其中,问是否服从大数定律?答:因为存
此文档下载收益归作者所有