欢迎来到天天文库
浏览记录
ID:34664574
大小:911.15 KB
页数:16页
时间:2019-03-08
《重庆大学高数往年考题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2015-01-042第一章最近考试试题ìxx++1,x³0一、函数的概念3.设f()x=íî2x<01.设f()x的定义域为[0,1],x+1,2则f(sin)x的定义域为[22kkpp,(+1)]ìxx-+1,-x£³0则f()-=xíî22.设f()x的定义域为(-1,1),1x+1,-x><0(0,)则f(2x-1)+f(3)x的定义域为3x2,ìx£1解:-<121x-<1-<13x<14.设f()x=íîx+5,x>10<2x<211-2、11则f()x-=5í06x-5>1312xex5.函数y=x的反函数为y=ln,xÎ(0,1)1211+e1-x7.已知f(x-)=x++21求fx().xx解:ex=+ye(1)x(1)-yex=y解:Qf(x-1)=()x-12+3xyyxxe=x=ln=fx()21-y1-y1x+36.设f(2x-1)=x2,则ff((x))的值域为[,)+¥xx48.已知f()sin=cosx+1求f(cos).t+11222解:令t=-2x1,x=,ft()=(t+1)xx24解:f3、(sin)=2-2sin2cosx=2x111221-2sinff((x))2222=4(f(x)+1)=4[4(x++1)1]fx()=2-2x22x=2cos-1121x2x2(x++1)1³1ff((x))³3f(cos)=2-2cos=-1cosx44422二、初等变换法求极限(n+1)(n+2)(n+3)13.已知limn®¥k=则k=35n5lim(nn2+--nn2)1.求极n®¥限2n212+++Ln=1,则k=解原式=lim=lim=14.已知lnim®¥nk22n®¥22n®¥4、nn++-nn111++-1nn(+1)nn解左边=limkn®¥2nlimn(1n2+--n21)12+++Lnn2.求极限n®¥5.求极限lim()-n®¥n+222n2解原式=limn®¥2=limn®¥=1n-n121nn(+1)n+1+-n11+-1解原式=lim[-]=lim=-1+2n2n®¥2(n+2)2n®¥2(n+2)2n5612015-01-0412xx-三、高等变换法求极限ee+6.极限xlim®+¥xx2=21n32ee+1.lim(1-)=1n®¥2-3xn1+e1=l5、im=x®+¥-x2-n27.极限32e+abnab1解lim(1)+=elim(1)-2=en®¥nn®¥n29x-+62x+-21xlim1x®-¥21-n2-n04x+cosx原式=limn®¥[](1)-2=e=1n216219x-+62x+-2-9-+2+-2limx+2x=limxx=limxxx2.x®¥(x+1)=ex®-¥2x®-¥4x+cosxcosxxx-+41(x+1)×x2lim+x+11-3+2=1解原式=x®¥(11+x)=e8=7-222sin(x-1)sin2x36、.求极限lim426.lim=x®1xx-+21x®021+xxsin-12解原式=lim(x-1)=lim1=1ln(sin2x+ex)-xx®1(x-1)2(x+1)2x®127.求lim2(x+1)4x®0x22x=limln(x+e)-2xx(2sinx-sin2)xx®014.求极限limxxsinsin2x+exx®01-cos(2)x22ln12exx×2sinx(1-cos)xx×2x×x1解原式=lim解原式=lim2=lim2=x®0x2+e2xx®01-cos(2)xx®047、2x2ln5.求极限limxxsin-cos2x+1e2xx®0sin2x2sinx22ln(1+)limxxsin+1-cos2x=limxxxsin1-co2xs2xex2x2解原式=x®0x2x®0[2+2]=lim2=limesinx=11221x22xx®0ln(1+x)x®0exx2x®0,1-cos~xx1-cos(2=x3)~(2)x9e2x10222x1x8.求极限lim[-]10.计算极限limln(2)-cotp()x-ax®0ln(1+2)xln(1+2)xx®aax解原式8、=lim21-=limxln2ln2x®0ln(1+2)xx®02x=a-x2ln(1+)x解原式=limalimcosp()x-a9.求极限lim(1+-x)1x®asinp()x-ax®ax®0lncosxexxln(1)+-1a-x解原式=lim1x®0ln[1+(cosx-1)]=lima=-x®ap()x-axxln(1)+x2pa=lim=lim=-2x®0cos1x-x®012-x2111222015-01-0413.当x®0时11.求极限与为等价无穷小,求常数解原式
2、11则f()x-=5í06x-5>1312xex5.函数y=x的反函数为y=ln,xÎ(0,1)1211+e1-x7.已知f(x-)=x++21求fx().xx解:ex=+ye(1)x(1)-yex=y解:Qf(x-1)=()x-12+3xyyxxe=x=ln=fx()21-y1-y1x+36.设f(2x-1)=x2,则ff((x))的值域为[,)+¥xx48.已知f()sin=cosx+1求f(cos).t+11222解:令t=-2x1,x=,ft()=(t+1)xx24解:f
3、(sin)=2-2sin2cosx=2x111221-2sinff((x))2222=4(f(x)+1)=4[4(x++1)1]fx()=2-2x22x=2cos-1121x2x2(x++1)1³1ff((x))³3f(cos)=2-2cos=-1cosx44422二、初等变换法求极限(n+1)(n+2)(n+3)13.已知limn®¥k=则k=35n5lim(nn2+--nn2)1.求极n®¥限2n212+++Ln=1,则k=解原式=lim=lim=14.已知lnim®¥nk22n®¥22n®¥
4、nn++-nn111++-1nn(+1)nn解左边=limkn®¥2nlimn(1n2+--n21)12+++Lnn2.求极限n®¥5.求极限lim()-n®¥n+222n2解原式=limn®¥2=limn®¥=1n-n121nn(+1)n+1+-n11+-1解原式=lim[-]=lim=-1+2n2n®¥2(n+2)2n®¥2(n+2)2n5612015-01-0412xx-三、高等变换法求极限ee+6.极限xlim®+¥xx2=21n32ee+1.lim(1-)=1n®¥2-3xn1+e1=l
5、im=x®+¥-x2-n27.极限32e+abnab1解lim(1)+=elim(1)-2=en®¥nn®¥n29x-+62x+-21xlim1x®-¥21-n2-n04x+cosx原式=limn®¥[](1)-2=e=1n216219x-+62x+-2-9-+2+-2limx+2x=limxx=limxxx2.x®¥(x+1)=ex®-¥2x®-¥4x+cosxcosxxx-+41(x+1)×x2lim+x+11-3+2=1解原式=x®¥(11+x)=e8=7-222sin(x-1)sin2x3
6、.求极限lim426.lim=x®1xx-+21x®021+xxsin-12解原式=lim(x-1)=lim1=1ln(sin2x+ex)-xx®1(x-1)2(x+1)2x®127.求lim2(x+1)4x®0x22x=limln(x+e)-2xx(2sinx-sin2)xx®014.求极限limxxsinsin2x+exx®01-cos(2)x22ln12exx×2sinx(1-cos)xx×2x×x1解原式=lim解原式=lim2=lim2=x®0x2+e2xx®01-cos(2)xx®04
7、2x2ln5.求极限limxxsin-cos2x+1e2xx®0sin2x2sinx22ln(1+)limxxsin+1-cos2x=limxxxsin1-co2xs2xex2x2解原式=x®0x2x®0[2+2]=lim2=limesinx=11221x22xx®0ln(1+x)x®0exx2x®0,1-cos~xx1-cos(2=x3)~(2)x9e2x10222x1x8.求极限lim[-]10.计算极限limln(2)-cotp()x-ax®0ln(1+2)xln(1+2)xx®aax解原式
8、=lim21-=limxln2ln2x®0ln(1+2)xx®02x=a-x2ln(1+)x解原式=limalimcosp()x-a9.求极限lim(1+-x)1x®asinp()x-ax®ax®0lncosxexxln(1)+-1a-x解原式=lim1x®0ln[1+(cosx-1)]=lima=-x®ap()x-axxln(1)+x2pa=lim=lim=-2x®0cos1x-x®012-x2111222015-01-0413.当x®0时11.求极限与为等价无穷小,求常数解原式
此文档下载收益归作者所有