欢迎来到天天文库
浏览记录
ID:34642976
大小:75.93 KB
页数:4页
时间:2019-03-08
《数学分析练习题1.4new》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、练习题1.4January25,20131第第第一一一章章章实实实数数数和和和数数数列列列极极极限限限1.1数数数轴轴轴1.2无无无尽尽尽小小小数数数1.3数数数列列列极极极限限限1.4收收收敛敛敛的的的性性性质质质1.4.1唯唯唯一一一性性性、、、有有有界界界性性性、、、子子子列列列、、、四四四则则则运运运算算算、、、无无无穷穷穷小小小、、、夹夹夹逼逼逼准准准则则则、、、保保保号号号性性性nn(((1)))不不不能能能判判判定定定;;;如如如{n}+{n};{n}+{−n},,,{(−1)}×
2、{(−1)};{n}×{n}(((2)))发发发散散散;;;反反反证证证法法法,,,利利利用用用四四四则则则运运运算算算性性性质质质bn=(an+bn)−an(((3)))发发发散散散;;;反反反证证证法法法,,,利利利用用用四四四则则则运运运算算算性性性质质质b=anbnnan{}{}(((4)))不不不能能能判判判定定定;;;如如如{0}×{n};1×n2n(((5)))不不不能能能判判判定定定;;;如如如sinn61+sinn61+sinn,,,n61+n61+n2nn2nn1.4.2按按
3、按定定定义义义;;;充分靠后时an+1;an∈(a−";a+")故2"a−"an+1a+"2"1−<<<<1+a−"a+"ana−"a−"当a̸=0时,2"是任意小;a "若a=0,则任取一个
4、q
5、<1的等比数列或{}{}{}1an+1nan=·{−1;−1;1};=·{1;−1;−1}nann+1极限不存在。1.4.3仅仅仅用用用本本本节节节前前前的的的知知知识识识求求求解解解nn1+1(2n(((1)))lim3+( 2)=lim33 3)13n+1+( 2)n+11+( 2)n=33()(
6、((2)))lim1+2++n−n=limn(n+1) n(n+2)=lim n=lim 1=-1n+222(n+2)2(n+2)2(1+2)2n1√(√√)ppppppn(n+1 n)(n+1+n)n11(((3)))limnn+1−n=limpp=limpp=lim√=n+1+nn+1+n1+1+12n(((4)))化化化简简简(√)(√)√n2+n−nn2+n+nn1n2+n−n=√=√=√n2+n+nn2+n+n1+1+1n当n充分大时,1<√1<131+1+12n1()1n(
7、)11n11n<√<3121++1n(√)12n由夹逼准则得原式limn+n−n=1(((5)))同同同上上上,,,当当当n充充充分分分大大大时时时,,,1<1−1<12n11(n2 n+2)n1()1()1(((6)))考考考虑虑虑(n)n→1,,,limnn=limn−1+2n=lim1−1+2n,,,同同同上上上;;;1nnn2nn(((7)))同同同上上上,,,当当当n充充充分分分大大大时时时,,,18、=1+sin2n62(((9)))化化化简简简[()11][()11]()284284211n+1−(n+1)n+1+(n+1)n+14−(n+1)2lim=lim1111(n2+1)8+(n+1)4(n2+1)8+(n+1)4()1n2+12−(n+1)同理=lim[][]1111(n2+1)8+(n+1)4(n2+1)4+(n+1)2n2+1−(n+1)2同理=lim[][][]11111(n2+1)8+(n+1)4(n2+1)4+(n+1)2(n2+1)2+(n+1)−2分子为−2n=li9、m[][]11111(n2+1)2+(n+1)(n2+1)8+(n+1)4(n2+1)4+(n+1)2n−2=lim[11][11][()1](n2+1)8+(n+1)4(n2+1)4+(n+1)21+12+1+1n2n=01.4.4求求求极极极限限限(((构构构造造造:::拆拆拆项项项、、、添添添项项项)))2n 1n(((1)))lim1+a+a++a1 a1 b=lim1 a1 b=1 b1+b+b2++bn 11 b1 a1 bn1 a1 a()()(((2)))lim1−110、+1−1+···+1−1=lim1−1=1223nn+1n+1()()()()()()(((3)))lim1+11+1···1+11−11−1···1−1=limn+11=123n23n2n22(((4)))lim22+3···2+3++n=lim4152···(2+n)(n 1)=lim2+n1=11+21+2+31+2+3++n3243(1+n)n3n3(((5)))讨讨讨论论论当当当n为偶数时,lim111、(1−2)+(3−4)+···+(n−1−n)12、=lim113、−1
8、=1+sin2n62(((9)))化化化简简简[()11][()11]()284284211n+1−(n+1)n+1+(n+1)n+14−(n+1)2lim=lim1111(n2+1)8+(n+1)4(n2+1)8+(n+1)4()1n2+12−(n+1)同理=lim[][]1111(n2+1)8+(n+1)4(n2+1)4+(n+1)2n2+1−(n+1)2同理=lim[][][]11111(n2+1)8+(n+1)4(n2+1)4+(n+1)2(n2+1)2+(n+1)−2分子为−2n=li
9、m[][]11111(n2+1)2+(n+1)(n2+1)8+(n+1)4(n2+1)4+(n+1)2n−2=lim[11][11][()1](n2+1)8+(n+1)4(n2+1)4+(n+1)21+12+1+1n2n=01.4.4求求求极极极限限限(((构构构造造造:::拆拆拆项项项、、、添添添项项项)))2n 1n(((1)))lim1+a+a++a1 a1 b=lim1 a1 b=1 b1+b+b2++bn 11 b1 a1 bn1 a1 a()()(((2)))lim1−1
10、+1−1+···+1−1=lim1−1=1223nn+1n+1()()()()()()(((3)))lim1+11+1···1+11−11−1···1−1=limn+11=123n23n2n22(((4)))lim22+3···2+3++n=lim4152···(2+n)(n 1)=lim2+n1=11+21+2+31+2+3++n3243(1+n)n3n3(((5)))讨讨讨论论论当当当n为偶数时,lim1
11、(1−2)+(3−4)+···+(n−1−n)
12、=lim1
13、−1
此文档下载收益归作者所有